80 research outputs found

    Synergistic use of Lagrangian dispersion and radiative transfer modelling with satellite and surface remote sensing measurements for the investigation of volcanic plumes: the Mount Etna eruption of 25–27 October 2013

    Get PDF
    Abstract. In this paper we combine SO2 and ash plume dispersion modelling with satellite and surface remote sensing observations to study the regional influence of a relatively weak volcanic eruption from Mount Etna on the optical and micro-physical properties of Mediterranean aerosols. We analyse the Mount Etna eruption episode of 25–27 October 2013. The evolution of the plume along the trajectory is investigated by means of the FLEXible PARTicle Lagrangian dispersion (FLEXPART) model. The satellite data set includes true colour images, retrieved values of volcanic SO2 and ash, estimates of SO2 and ash emission rates derived from MODIS (MODerate resolution Imaging Spectroradiometer) observations and estimates of cloud top pressure from SEVIRI (Spinning Enhanced Visible and InfraRed Imager). Surface remote sensing measurements of aerosol and SO2 made at the ENEA Station for Climate Observations (35.52° N, 12.63° E; 50 m a.s.l.) on the island of Lampedusa are used in the analysis. The combination of these different data sets suggests that SO2 and ash, despite the initial injection at about 7.0 km altitude, reached altitudes around 10–12 km and influenced the column average aerosol particle size distribution at a distance of more than 350 km downwind. This study indicates that even a relatively weak volcanic eruption may produce an observable effect on the aerosol properties at the regional scale. The impact of secondary sulfate particles on the aerosol size distribution at Lampedusa is discussed and estimates of the clear-sky direct aerosol radiative forcing are derived. Daily shortwave radiative forcing efficiencies, i.e. radiative forcing per unit AOD (aerosol optical depth), are calculated with the LibRadtran model. They are estimated between −39 and −48 W m−2 AOD−1 at the top of the atmosphere and between −66 and −49 W m−2 AOD−1 at the surface, with the variability in the estimates mainly depending on the aerosol single scattering albedo. These results suggest that sulfate particles played a large role in the transported plume composition and radiative forcing, while the contribution by ash particles was small in the volcanic plume arriving at Lampedusa during this event

    A Novel S -Adenosyl-l-methionine:Arsenic(III) Methyltransferase from Rat Liver Cytosol

    Get PDF
    S-Adenosyl-l-methionine (AdoMet):arsenic(III) methyltransferase, purified from liver cytosol of adult male Fischer 344 rats, catalyzes transfer of a methyl group from AdoMet to trivalent arsenicals producing methylated and dimethylated arsenicals. The kinetics of production of methylated arsenicals in reaction mixtures containing enzyme, AdoMet, dithiothreitol, glutathione (GSH), and arsenite are consistent with a scheme in which monomethylated arsenical produced from arsenite is the substrate for a second methylation reaction that yields dimethylated arsenical. The mRNA for this protein predicts a 369-amino acid residue protein (molecular mass 41056) that contains common methyltransferase sequence motifs. Its sequence is similar to Cyt19, a putative methyltransferase, expressed in human and mouse tissues. Reverse transcription-polymerase chain reaction detects S-adenosyl-l-methionine:arsenic(III) methyltransferase mRNA in rat tissues and in HepG2 cells, a human cell line that methylates arsenite and methylarsonous acid. S-Adenosyl-l-methionine:arsenic(III) methyltransferase mRNA is not detected in UROtsa cells, an immortalized human urothelial cell line that does not methylate arsenite. Because methylation of arsenic is a critical feature of its metabolism, characterization of this enzyme will improve our understanding of this metalloid's metabolism and its actions as a toxin and a carcinogen

    Feeding behaviour of broiler chickens: a review on the biomechanical characteristics

    Full text link

    Using hidden scale for salient object detection

    No full text

    New scale analyses reveal centenarian African coelacanths

    No full text
    The extant coelacanth was discovered in 1938;1 its biology and ecology remain poorly known due to the low number of specimens collected. Only two previous studies1,2 have attempted to determine its age and growth. They suggested a maximum lifespan of 20 years, placing the coelacanth among the fastest growing marine fish. These findings are at odds with the coelacanth’s other known biological features including low oxygen-extraction capacity, slow metabolism, ovoviviparity, and low fecundity, typical of fish with slow life histories and slow growth. In this study, we use polarized light microscopy to study growth on scales based on a large sample of 27 specimens. Our results demonstrate for the first time nearly imperceptible annual calcified structures (circuli) on the scales and show that maximal age of the coelacanth was underestimated by a factor of 5. Our validation method suggests that circuli are indeed annual, thus supporting that the coelacanth is among the longest-living fish species, its lifespan being probably around 100 years. Like deep-sea sharks with a reduced metabolism, the coelacanth has among the slowest growth for its size. Further reappraisals of age at first sexual maturity (in the range 40 to 69 years old) and gestation duration (of around 5 years) show that the living coelacanth has one of the slowest life histories of all marine fish and possibly the longest gestation. As long-lived species with slow life histories are extremely vulnerable to natural and anthropogenic perturbations, our results suggest that coelacanths may be more threatened than previously considered
    corecore