4,809 research outputs found

    Designing algorithms to aid discovery by chemical robots

    Get PDF
    Recently, automated robotic systems have become very efficient, thanks to improved coupling between sensor systems and algorithms, of which the latter have been gaining significance thanks to the increase in computing power over the past few decades. However, intelligent automated chemistry platforms for discovery orientated tasks need to be able to cope with the unknown, which is a profoundly hard problem. In this Outlook, we describe how recent advances in the design and application of algorithms, coupled with the increased amount of chemical data available, and automation and control systems may allow more productive chemical research and the development of chemical robots able to target discovery. This is shown through examples of workflow and data processing with automation and control, and through the use of both well-used and cutting-edge algorithms illustrated using recent studies in chemistry. Finally, several algorithms are presented in relation to chemical robots and chemical intelligence for knowledge discovery

    The Effectiveness of a Robotic Seal on Compassion Satisfaction in Acute Care Nurses: A Mixed Methods Approach

    Get PDF
    Problem: Nurses face a variety of stressors that can result in decreased levels of compassion satisfaction. The purpose of this study was to investigate the efficacy of a computerized interactive social assist robot (PARO) to decrease stressors and increase compassion levels of acute care nurses in an inpatient setting. Theory: The Professional Quality of Life Model posits that low Compassion Satisfaction, Burnout, and Secondary Traumatic Stress leads to Compassion Fatigue. Hypotheses: It was hypothesized that interaction with a social assist robot with artificial intelligence will result in decreasing levels of stress therefore increasing levels of compassion satisfaction in nurses working in the inpatient setting. Design/Methods: This was an explanatory sequential mixed methods study. In the first quantitative phase, data were collected before and after the intervention. The qualitative component occurred during the second phase at which time focus group interview sessions were used to explain the results of phase one. Analysis: Phase one, quantitative data were analyzed using repeated measures analysis of covariance. Phase two, qualitative data were coded and thematic analysis conducted for focus group transcripts. Data from both the quantitative and qualitative phases were integrated to further explain the results

    CSM-361 - A Logic for Schema-based Program Development

    Get PDF
    We show how a theory of specification refinement and program development can be constructed as a conservative extension of our existing logic for Z. The resulting system can be set up as a development method for Z, or as a generalisation of a refinement calculus (with a novel semantics). In addition to the technical development we illustrate how the theory can be used in practice

    Spectral geometry as a probe of quantum spacetime

    Full text link
    Employing standard results from spectral geometry, we provide strong evidence that in the classical limit the ground state of three-dimensional causal dynamical triangulations is de Sitter spacetime. This result is obtained by measuring the expectation value of the spectral dimension on the ensemble of geometries defined by these models, and comparing its large scale behaviour to that of a sphere (Euclidean de Sitter). From the same measurement we are also able to confirm the phenomenon of dynamical dimensional reduction observed in this and other approaches to quantum gravity -- the first time this has been done for three-dimensional causal dynamical triangulations. In this case, the value for the short-scale limit of the spectral dimension that we find is approximately 2. We comment on the relevance of these results for the comparison to asymptotic safety and Horava-Lifshitz gravity, among other approaches to quantum gravity.Comment: 25 pages, 6 figures. Version 2: references to figures added, acknowledgment added

    The optical polarization of Epsilon Aurigae through the 1982-84 eclipse

    Get PDF
    About 350 nights observations on the 61-cm telescope at Pine Mt. Observatory were made of the variable polarization of Eps. Aurigae during 1982-85, in the U, B, and V color bands. The V data are the most complete and are shown. In terms of the overall features the curves in all three colors are quite similar. The typical errors per nightly point in the V curves are about 0.015% for either of the two normalized, equatorial Stokes parameters Q and U. Note that there is a large background or constant component of some 2.5%, position angle around 135 deg. This is presumably largely interstellar, and the intrinsic polarization probably does not much exceed the amplitude of the variable component, approx. 0.5%. A few field-star polarizations were measured but a very clear pattern was not obtained in this part of the sky

    Wireless recording of the calls of Rousettus aegyptiacus and their reproduction using electrostatic transducers

    Get PDF
    Bats are capable of imaging their surroundings in great detail using echolocation. To apply similar methods to human engineering systems requires the capability to measure and recreate the signals used, and to understand the processing applied to returning echoes. In this work, the emitted and reflected echolocation signals of Rousettus aegyptiacus are recorded while the bat is in flight, using a wireless sensor mounted on the bat. The sensor is designed to replicate the acoustic gain control which bats are known to use, applying a gain to returning echoes that is dependent on the incurred time delay. Employing this technique allows emitted and reflected echolocation calls, which have a wide dynamic range, to be recorded. The recorded echoes demonstrate the complexity of environment reconstruction using echolocation. The sensor is also used to make accurate recordings of the emitted calls, and these calls are recreated in the laboratory using custom-built wideband electrostatic transducers, allied with a spectral equalization technique. This technique is further demonstrated by recreating multi-harmonic bioinspired FM chirps. The ability to record and accurately synthesize echolocation calls enables the exploitation of biological signals in human engineering systems for sonar, materials characterization and imaging
    corecore