18 research outputs found

    Deglutarylation of glutaryl-CoA dehydrogenase by deacylating enzyme SIRT5 promotes lysine oxidation in mice

    Get PDF
    A wide range of protein acyl modifications has been identified on enzymes across various metabolic processes; however, the impact of these modifications remains poorly understood. Protein glutarylation is a recently identified modification that can be nonenzymatically driven by glutaryl-CoA. In mammalian systems, this unique metabolite is only produced in the lysine and tryptophan oxidative pathways. To better understand the biology of protein glutarylation, we studied the relationship between enzymes within the lysine/tryptophan catabolic pathways, protein glutarylation, and regulation by the deglutarylating enzyme sirtuin 5 (SIRT5). Here, we identify glutarylation on the lysine oxidation pathway enzyme glutaryl-CoA dehydrogenase (GCDH) and show increased GCDH glutarylation when glutaryl-CoA production is stimulated by lysine catabolism. Our data reveal that glutarylation of GCDH impacts its function, ultimately decreasing lysine oxidation. We also demonstrate the ability of SIRT5 to deglutarylate GCDH, restoring its enzymatic activity. Finally, metabolomic and bioinformatic analyses indicate an expanded role for SIRT5 in regulating amino acid metabolism. Together, these data support a feedback loop model within the lysine/tryptophan oxidation pathway in which glutaryl-CoA is produced, in turn inhibiting GCDH function via glutaryl modification of GCDH lysine residues and can be relieved by SIRT5 deacylation activity

    Legitimising Emerging Power Diplomacy: an Analysis of Government and Media Discourses on Brazilian Foreign Policy under Lula

    Full text link

    Apoliprotein E Genotype Is Associated With Apoliprotein B Plasma Levels But Not With Coronary Calcium Score In Very Elderly Individuals In Primary Care Setting.

    No full text
    Epidemiological surveys indicate the influence of polymorphisms of apolipoprotein (apo) E on plasma lipids and triglyceride-rich lipoprotein levels, with impact on atherosclerotic phenotypes. We studied the association of classic genotypes of the apoE gene with clinical and biochemical risk factors for atherosclerosis in a segment of the very-old Brazilian individuals, with emphasis on the lipemic profile. We performed cross-sectional analyses of clinical and laboratory assessments, including cardiac computed tomography, across ε2, ε3 and ε4 carriers of the apoE gene with a convenience sample of 208 participants eligible for prevention against cardiovascular events. When non-ε4 carriers were compared with ε4 carrying subjects, lower levels of ApoB as well as ApoB/ApoA ratios were observed in the former group. Tests between apoE polymorphisms with other clinical/biochemical variables and those with arterial calcification showed no significant differences between groups. The study suggests a possible atherogenic role of the ε4 allele attributable to increased ApoB levels and ApoB/ApoA ratios among very-old subjects in primary care setting.539275-

    A LysM domain intervenes in sequential protein-protein and protein-peptidoglycan interactions important for spore coat assembly in Bacillus subtilis

    No full text
    At a late stage in spore development in Bacillus subtilis, the mother cell directs synthesis of a layer of peptidoglycan known as the cortex between the two forespore membranes, as well as the assembly of a protective protein coat at the surface of the forespore outer membrane. SafA, the key determinant of inner coat assembly, is first recruited to the surface of the developing spore and then encases the spore under the control of the morphogenetic protein SpoVID. SafA has a LysM peptidoglycan-binding domain, SafALysM, and localizes to the cortex-coat interface in mature spores. SafALysM is followed by a region, A, required for an interaction with SpoVID and encasement. We now show that residues D10 and N30 in SafALysM, while involved in the interaction with peptidoglycan, are also required for the interaction with SpoVID and encasement. We further show that single alanine substitutions on residues S11, L12, and I39 of SafALysM that strongly impair binding to purified cortex peptidoglycan affect a later stage in the localization of SafA that is also dependent on the activity of SpoVE, a transglycosylase required for cortex formation. The assembly of SafA thus involves sequential protein-protein and protein-peptidoglycan interactions, mediated by the LysM domain, which are required first for encasement then for the final localization of the protein in mature spores.IMPORTANCE Bacillus subtilis spores are encased in a multiprotein coat that surrounds an underlying peptidoglycan layer, the cortex. How the connection between the two layers is enforced is not well established. Here, we elucidate the role of the peptidoglycan-binding LysM domain, present in two proteins, SafA and SpoVID, that govern the localization of additional proteins to the coat. We found that SafALysM is a protein-protein interaction module during the early stages of coat assembly and a cortex-binding module at late stages in morphogenesis, with the cortex-binding function promoting a tight connection between the cortex and the coat. In contrast, SpoVIDLysM functions only as a protein-protein interaction domain that targets SpoVID to the spore surface at the onset of coat assembly.</p
    corecore