7,712 research outputs found

    Ulrich Leopold

    Get PDF

    An Algorithm to Compute the Topological Euler Characteristic, Chern-Schwartz-MacPherson Class and Segre Class of Projective Varieties

    Full text link
    Let VV be a closed subscheme of a projective space Pn\mathbb{P}^n. We give an algorithm to compute the Chern-Schwartz-MacPherson class, Euler characteristic and Segre class of V V. The algorithm can be implemented using either symbolic or numerical methods. The algorithm is based on a new method for calculating the projective degrees of a rational map defined by a homogeneous ideal. Using this result and known formulas for the Chern-Schwartz-MacPherson class of a projective hypersurface and the Segre class of a projective variety in terms of the projective degrees of certain rational maps we give algorithms to compute the Chern-Schwartz-MacPherson class and Segre class of a projective variety. Since the Euler characteristic of VV is the degree of the zero dimensional component of the Chern-Schwartz-MacPherson class of VV our algorithm also computes the Euler characteristic χ(V)\chi(V). Relationships between the algorithm developed here and other existing algorithms are discussed. The algorithm is tested on several examples and performs favourably compared to current algorithms for computing Chern-Schwartz-MacPherson classes, Segre classes and Euler characteristics

    Ulrich Siegfried Leupold (1909-70)

    Get PDF

    Nearest Points on Toric Varieties

    Full text link
    We determine the Euclidean distance degree of a projective toric variety. This extends the formula of Matsui and Takeuchi for the degree of the AA-discriminant in terms of Euler obstructions. Our primary goal is the development of reliable algorithmic tools for computing the points on a real toric variety that are closest to a given data point.Comment: 20 page

    Segre Class Computation and Practical Applications

    Full text link
    Let XYX \subset Y be closed (possibly singular) subschemes of a smooth projective toric variety TT. We show how to compute the Segre class s(X,Y)s(X,Y) as a class in the Chow group of TT. Building on this, we give effective methods to compute intersection products in projective varieties, to determine algebraic multiplicity without working in local rings, and to test pairwise containment of subvarieties of TT. Our methods may be implemented without using Groebner bases; in particular any algorithm to compute the number of solutions of a zero-dimensional polynomial system may be used
    corecore