research

Segre Class Computation and Practical Applications

Abstract

Let XYX \subset Y be closed (possibly singular) subschemes of a smooth projective toric variety TT. We show how to compute the Segre class s(X,Y)s(X,Y) as a class in the Chow group of TT. Building on this, we give effective methods to compute intersection products in projective varieties, to determine algebraic multiplicity without working in local rings, and to test pairwise containment of subvarieties of TT. Our methods may be implemented without using Groebner bases; in particular any algorithm to compute the number of solutions of a zero-dimensional polynomial system may be used

    Similar works