8,458 research outputs found

    Production of exotic isotopes in complete fusion reactions with radioactive beams

    Full text link
    The isotopic dependence of the complete fusion (capture) cross section is analyzed in the reactions 130,132,134,136,138,140,142,144,146,148,150^{130,132,134,136,138,140,142,144,146,148,150}Xe+48^{48}Ca with stable and radioactive beams. It is shown for the first time that the very neutron-rich nuclei 186191^{186-191}W can be reached with relatively large cross sections by complete fusion reactions with radioactive ion beams at incident energies near the Coulomb barrier. A comparison between the complete fusion and fragmentation reactions for the production of neutron-rich W and neutron-deficient Rn isotopes is performed.Comment: 13 pages, 6 figures, accepted in PR

    Projected Three-Pion Correlation Functions

    Full text link
    We propose a new procedure for constructing projected three-pion correlation functions which reduces undesirable artificial momentum dependences resulting from the commonly used procedure and facilitates comparison of three-pion correlation data with theoretical models.Comment: 6 pages revtex, incl. 1 figure. Submitted as Brief Report to Physical Review C. Normalization error and typos correcte

    Photon HBT interferometry for non-central heavy-ion collisions

    Get PDF
    Currently, the only known way to obtain experimental information about the space-time structure of a heavy-ion collision is through 2-particle momentum correlations. Azimuthally sensitive HBT interferometry (Hanbury Brown-Twiss intensity interferometry) can complement elliptic flow measurements by constraining the spatial deformation of the source and its time evolution. Performing these measurements on photons allows us to access the fireball evolution at earlier times than with hadrons. Using ideal hydrodynamics to model the space-time evolution of the collision fireball, we explore theoretically various aspects of 2-photon intensity interferometry with transverse momenta up to 2 GeV, in particular the azimuthal angle dependence of the HBT radii in non-central collisions. We highlight the dual nature of thermal photon emission, in both central and non-central collisions, resulting from the superposition of QGP and hadron resonance gas photon production. This signature is present in both the thermal photon source function and the HBT radii extracted from Gaussian fits of the 2-photon correlation function.Comment: 18 pages, 12 figure

    Hydrodynamic simulation of elliptic flow

    Get PDF
    We use a hydrodynamic model to study the space-time evolution transverse to the beam direction in ultrarelativistic heavy-ion collisions with nonzero impact parameters. We focus on the influence of early pressure on the development of radial and elliptic flow. We show that at high energies elliptic flow is generated only during the initial stages of the expansion while radial flow continues to grow until freeze-out. Quantitative comparisons with SPS data from semiperipheral Pb+Pb collisions suggest the applicability of hydrodynamical concepts already \approx 1 fm/c after impact.Comment: 4 pages, 5 figures, proceedings for Quark Matter 9

    Turbulent thermalization of weakly coupled non-abelian plasmas

    Full text link
    We study the dynamics of weakly coupled non-abelian plasmas within the frameworks of classical-statistical lattice gauge-theory and kinetic theory. We focus on a class of systems which are highly occupied, isotropic at all times and initially characterized by a single momentum scale. These represent an idealized version of the situation in relativistic heavy ion-collisions in the color-glass condensate picture, where on a time scale 1/Qs1/Q_s after the collision of heavy nuclei a longitudinally expanding plasma characterized by the saturation scale QsQ_s is formed. Our results indicate that the system evolves according to a turbulent Kolmogorov cascade in the classical regime. Taking this into account, the kinetic description is able to reproduce characteristic features of the evolution correctly.Comment: 8 pages, 6 figure

    Hadron production from quark coalescence and jet fragmentation in intermediate energy collisions at RHIC

    Get PDF
    Transverse momentum spectra of pions, protons and antiprotons in Au+Au collisions at intermediate RHIC energy of sNN=62\sqrt{s_{NN}}=62 GeV are studied in a model that includes both quark coalescence from the dense partonic matter and fragmentation of the quenched perturbative minijet partons. The resulting baryon to meson ratio at intermediate transverse momenta is predicted to be larger than that seen in experiments at higher center of mass energies.Comment: 6 pages, 2 figures. Figures replaced to differentially address the high-pT behavior of baryon versus antibaryon to meson ratio

    Energy and momentum deposited into a QCD medium by a jet shower

    Get PDF
    Hard partons moving through a dense QCD medium lose energy by radiative emissions and elastic scatterings. Deposition of the radiative contribution into the medium requires rescattering of the radiated gluons. We compute the total energy loss and its deposition into the medium self-consistently within the same formalism, assuming perturbative interaction between probe and medium. The same transport coefficients that control energy loss of the hard parton determine how the energy is deposited into the medium; this allows a parameter free calculation of the latter once the former have been computed or extracted from experimental energy loss data. We compute them for a perturbative medium in hard thermal loop (HTL) approximation. Assuming that the deposited energy-momentum is equilibrated after a short relaxation time, we compute the medium's hydrodynamical response and obtain a conical pattern that is strongly enhanced by showering.Comment: 4 pages, 3 figures, revtex4, intro modified, typos correcte

    Mean Field Dynamics in Non-Abelian Plasmas from Classical Transport Theory

    Get PDF
    Based on classical transport theory, we present a general set of covariant equations describing the dynamics of mean fields and their statistical fluctuations in a non-Abelian plasma in or out-of-equilibrium. A procedure to obtain the collision integrals for the Boltzmann equation from the microscopic theory is described. As an application, we study a hot non-Abelian plasma close to equilibrium, where the fluctuations are integrated out explicitly. For soft fields, and at logarithmic accuracy, we obtain B\"odeker's effective theory.Comment: 4 pages, revtex, no figures. Typo removed, a reference updated, version as to appear in Phys. Rev. Let
    corecore