66 research outputs found

    A Numerical Study of the Salinity Structure of a Shallow Bay - Case of Copano Bay, TX

    Get PDF
    The Gulf of Mexico has 39 estuaries, in which most of them are characterized as bar-built, shallow bay estuaries. Located at the northwest Gulf of Mexico, the Mission Aransas Estuarine Research Reserve is an area with 750 km^2 with 6 bays. The second largest bay is named Copano Bay, an area with 200 km^2 that has two main river sources, from Mission River and Aransas River, which are the only source of fresh water to the system. The bay is opened at one tidal channel at the south that exchanges salty water with Aransas Bay. As part of the monitoring system for Copano Bay, we used the two stations located at the east and west sides of the bay to understand the temporal variability of salinity in the bay. Because the salinity pattern is not as well defined as the temperature profile, we used a 3D hydrodynamic model (ROMS) to analyze how changes in river discharge, precipitation and winds will affect the bay. After running the simulations for 5 years, from January/2010 to December/2014, we found that the salinity of the bay is controlled by flooding events on the upper bay and by tides on the channel side. During ’wet years’ (2010 and 2015), the salinity is kept in a range between 10 gkg^-1 and 25 gkg^-1. For ’dry years’, where the discharge is low, the salinity was kept in a range of 30 gkg^-1 to 45 gkg^-1, considered hypersaline conditions. The year of 2011, considered a ’transition year’, had the lowest river discharge and precipitation, causing the salinity to increase at a constant rate. By comparing the east and west sides, we saw that the east side is barely influenced by river discharge, responding mostly to the tides, while the west side is mostly influenced by the river discharge. The flooding events are responsible for an increase in vertical and horizontal stratification. A closer look at local events showed the water column took longer to stabilize, after a change in wind due to a storm or front, under hypersaline conditions than under normal years

    Strategies in a metallophyte species to cope with manganese excess

    Get PDF
    The effect of exposure to high Mn concentration was studied in a metallophyte species, Erica andevalensis, using hydroponic cultures with a range of Mn concentrations (0.06, 100, 300, 500, and 700 mg L-1). At harvest, biomass production, element uptake, and biochemical indicators of metal stress (leaf pigments, organic acids, amino acids, phenols, and activities of catalase, peroxidase, superoxide dismutase) were determined in leaves and roots. Increasing Mn concentrations led to a decrease in biomass accumulation, and tip leaves chlorosis was the only toxicity symptom detected. In a similar way, photosynthetic pigments (chlorophylls a and b, and carotenoids) were affected by high Mn levels. Among organic acids, malate and oxalate contents in roots showed a significant increase at the highest Mn concentration, while in leaves, Mn led to an increasing trend in citrate and malate contents. An increase of Mn also induced an increase in superoxide dismutase activity in roots and catalase activity in leaves. As well, significant changes in free amino acids were induced by Mn concentrations higher than 300 mg L-1, especially in roots. No significant changes in phenolic compounds were observed in the leaves, but root phenolics were significantly increased by increasing Mn concentrations in treatments. When Fe supply was increased 10 and 20 times (7–14 mg Fe L-1 as Fe-EDDHA) in the nutrient solutions at the highest Mn concentration (700 mg Mn L-1), it led to significant increases in photosynthetic pigments and biomass accumulation. Manganese was mostly accumulated in the roots, and the species was essentially a Mn excluder. However, considering the high leaf Mn concentration recorded without toxicity symptoms, E. andevalensis might be rated as a Mn-tolerant speciesinfo:eu-repo/semantics/publishedVersio

    Venom gland transcriptomes of two elapid snakes (Bungarus multicinctus and Naja atra) and evolution of toxin genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Kraits (genus <it>Bungarus</it>) and cobras (genus <it>Naja</it>) are two representative toxic genera of elapids in the old world. Although they are closely related genera and both of their venoms are very toxic, the compositions of their venoms are very different. To unveil their detailed venoms and their evolutionary patterns, we constructed venom gland cDNA libraries and genomic bacterial artificial chromosome (BAC) libraries for <it>Bungarus multicinctus </it>and <it>Naja atra</it>, respectively. We sequenced about 1500 cDNA clones for each of the venom cDNA libraries and screened BAC libraries of the two snakes by blot analysis using four kinds of toxin probes; <it>i.e</it>., three-finger toxin (3FTx), phospholipase A2 (PLA2), kunitz-type protease inhibitor (Kunitz), and natriuretic peptide (NP).</p> <p>Results</p> <p>In total, 1092 valid expressed sequences tags (ESTs) for <it>B. multicinctus </it>and 1166 ESTs for <it>N. atra </it>were generated. About 70% of these ESTs can be annotated as snake toxin transcripts. 3FTx (64.5%) and <it>β </it>bungarotoxin (25.1%) comprise the main toxin classes in <it>B. multicinctus</it>, while 3FTx (95.8%) is the dominant toxin in <it>N. atra</it>. We also observed several less abundant venom families in <it>B. multicinctus </it>and <it>N. atra</it>, such as PLA2, C-type lectins, and Kunitz. Peculiarly a cluster of NP precursors with tandem NPs was detected in <it>B. multicinctus</it>. A total of 71 positive toxin BAC clones in <it>B. multicinctus </it>and <it>N. atra </it>were identified using four kinds of toxin probes (3FTx, PLA2, Kunitz, and NP), among which 39 3FTx-postive BACs were sequenced to reveal gene structures of 3FTx toxin genes.</p> <p>Conclusions</p> <p>Based on the toxin ESTs and 3FTx gene sequences, the major components of <it>B. multicinctus </it>venom transcriptome are neurotoxins, including long chain alpha neurotoxins (<it>α</it>-ntx) and the recently originated <it>β </it>bungarotoxin, whereas the <it>N. atra </it>venom transcriptome mainly contains 3FTxs with cytotoxicity and neurotoxicity (short chain <it>α</it>-ntx). The data also revealed that tandem duplications contributed the most to the expansion of toxin multigene families. Analysis of nonsynonymous to synonymous nucleotide substitution rate ratios (<it>dN</it>/<it>dS</it>) indicates that not only multigene toxin families but also other less abundant toxins might have been under rapid diversifying evolution.</p

    Enhanced Longevity by Ibuprofen, Conserved in Multiple Species, Occurs in Yeast through Inhibition of Tryptophan Import

    Get PDF
    The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS), but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life.The open access fee for this work was funded through the Texas A&M University Open Access to Knowledge (OAK) Fund

    Newborn screening in India

    No full text
    corecore