1,531 research outputs found

    The volume and mean depth of Earth's lakes

    Get PDF
    Global lake volume estimates are scarce, highly variable, and poorly documented. We developed a rigorous method for estimating global lake depth and volume based on the Hurst coefficient of Earth's surface, which provides a mechanistic connection between lake area and volume. Volume‐area scaling based on the Hurst coefficient is accurate and consistent when applied to lake data sets spanning diverse regions. We applied these relationships to a global lake area census to estimate global lake volume and depth. The volume of Earth's lakes is 199,000 km3 (95% confidence interval 196,000–202,000 km3). This volume is in the range of historical estimates (166,000–280,000 km3), but the overall mean depth of 41.8 m (95% CI 41.2–42.4 m) is significantly lower than previous estimates (62–151 m). These results highlight and constrain the relative scarcity of lake waters in the hydrosphere and have implications for the role of lakes in global biogeochemical cycles

    Finding the depth of radioactivity in construction materials

    Get PDF
    A key challenge in disposing of nuclear legacy facilities and planning a new nuclear plant is how to assess the extent or likelihood of radioactive contamination in construction materials and the ground. This paper summarises the status of two techniques based on the analysis of emitted radiation from materials that comprise such structures, and describes how this analysis can be used to infer the depth of contamination without the need to penetrate the structure or to destroy it in the process. Two experimental facilities have been developed to test the efficacy of these techniques, and data are provided for the most widespread contaminant experienced in the sector: caesium-137. Finally, the influence on the technique of the likely variety of silica-based media to be encountered in the nuclear industry is described, together with a summary of challenges to be addressed in future research

    Dynamics of charge-displacement channeling in intense laser-plasma interactions

    Get PDF
    The dynamics of transient electric fields generated by the interaction of high intensity laser pulses with underdense plasmas has been studied experimentally with the proton projection imaging technique. The formation of a charged channel, the propagation of its front edge and the late electric field evolution have been characterised with high temporal and spatial resolution. Particle-in-cell simulations and an electrostatic, ponderomotive model reproduce the experimental features and trace them back to the ponderomotive expulsion of electrons and the subsequent ion acceleration.Comment: 5 figures, accepted for publication in New Journal of Physic

    Donut: measuring optical aberrations from a single extra-focal image

    Get PDF
    We propose a practical method to calculate Zernike aberrations from analysis of a single long-exposure defocused stellar image. It consists in fitting the aberration coefficients and seeing blur directly to a realistic image binned into detector pixels. This "donut" method is different from curvature sensing in that it does not make the usual approximation of linearity. We calculate the sensitivity of this technique to detector and photon noise and determine optimal parameters for some representative cases. Aliasing of high-order un-modeled aberrations is evaluated and shown to be similar to a low-order Shack-Hartmann sensor. The method has been tested with real data from the SOAR and Blanco 4m telescopes.Comment: 13 pages, 9 figures. Accepted at PAS

    Orion\u27s Bar: Physical Conditions Across the Definitive H\u3csup\u3e+\u3c/sup\u3e/H\u3csup\u3e0\u3c/sup\u3e/H\u3csub\u3e2\u3c/sub\u3e Interface

    Get PDF
    Previous work has shown the Orion Bar to be an interface between ionized and molecular gas, viewed roughly edge-on, which is excited by the light from the Trapezium cluster. Much of the emission from any star-forming region will originate from such interfaces, so the Bar serves as a foundation test of any emission model. Here we combine X-ray, optical, infrared (IR), and radio data sets to derive emission spectra along the transition from H+ to H0 to H2 regions. We then reproduce the spectra of these layers with a simulation that simultaneously accounts for the detailed microphysics of the gas, the grains, and molecules, especially H2 and CO. The magnetic field, observed to be the dominant pressure in another region of the Orion Nebula, is treated as a free parameter, along with the density of cosmic rays. Our model successfully accounts for the optical, IR, and radio observations across the Bar by including a significant magnetic pressure and also heating by an excess density of cosmic rays, which we suggest is due to cosmic rays being trapped in the compressed magnetic field. In the Orion Bar, as we had previously found in M17, momentum carried by radiation and winds from the newly formed stars pushes back and compresses the surrounding gas. There is a rough balance between outward momentum in starlight and the total pressure in atomic and molecular gas surrounding the H+ region. If the gas starts out with a weak magnetic field, the starlight from a newly formed cluster will push back the gas and compress the gas, magnetic field, and cosmic rays until magnetic pressure becomes an important factor
    corecore