59 research outputs found
The LOFAR Two-metre Sky Survey V. Second data release
In this data release from the ongoing LOw-Frequency ARray (LOFAR) Two-metre Sky Survey we present 120a 168 MHz images covering 27% of the northern sky. Our coverage is split into two regions centred at approximately 12h45m +44 30a and 1h00m +28 00a and spanning 4178 and 1457 square degrees respectively. The images were derived from 3451 h (7.6 PB) of LOFAR High Band Antenna data which were corrected for the direction-independent instrumental properties as well as direction-dependent ionospheric distortions during extensive, but fully automated, data processing. A catalogue of 4 396 228 radio sources is derived from our total intensity (Stokes I) maps, where the majority of these have never been detected at radio wavelengths before. At 6a resolution, our full bandwidth Stokes I continuum maps with a central frequency of 144 MHz have: a median rms sensitivity of 83 μJy beama 1; a flux density scale accuracy of approximately 10%; an astrometric accuracy of 0.2a; and we estimate the point-source completeness to be 90% at a peak brightness of 0.8 mJy beama 1. By creating three 16 MHz bandwidth images across the band we are able to measure the in-band spectral index of many sources, albeit with an error on the derived spectral index of > a ±a 0.2 which is a consequence of our flux-density scale accuracy and small fractional bandwidth. Our circular polarisation (Stokes V) 20a resolution 120a168 MHz continuum images have a median rms sensitivity of 95 μJy beama 1, and we estimate a Stokes I to Stokes V leakage of 0.056%. Our linear polarisation (Stokes Q and Stokes U) image cubes consist of 480a A a 97.6 kHz wide planes and have a median rms sensitivity per plane of 10.8 mJy beama 1 at 4a and 2.2 mJy beama 1 at 20a; we estimate the Stokes I to Stokes Q/U leakage to be approximately 0.2%. Here we characterise and publicly release our Stokes I, Q, U and V images in addition to the calibrated uv-data to facilitate the thorough scientific exploitation of this unique dataset
Ultrahigh acceleration of plasma blocks by nonlinear forces for side-on laser ignition of solid density fusion fuel
A fundamental difference of very high intensity laser interaction with plasmas from solid targets appears with lasing at picosecond (ps) pulse durations in contrast to pulses of nanoseconds (ns). This can be seen from the more than 10,000 times higher acceleration with ps pulse durations than with thermal pressure determined interaction. A ps pulse duration produces instantly acting high-efficiency nonlinear (ponderomotive) electrodynamic force dominated acceleration in contrast to heating with longer pulses. The ps pulses accelerate high-density plasma blocks. This can be used by a new scheme of side-on driven laser fusion with generating a flame ignition in uncompressed fusion fuel of solid density resulting in a reaction velocity of more than 2000 km/s for DT
Plasma block acceleration by ps-TW laser irradiation
Plasma emission or ablation from laser-irradiated targets shows very complicated properties. One novelty was observed at irradiation of neodymium glass laser pulses of ps duration and TW power if there was a very strong suppression of prepulses by a contrast ratio of about 108 until 100 ps before the main pulse arrived. The emitted ion maximum energy was more than 50 times below the values observed in all the comparable numerous experiments. The other anomaly is that the number of the fast ions did not change when the laser intensity varied by a factor 30. This permitted a separation of the usual effects of self-focusing and permitted an analysis fully based on simplified plane geometry as a skin layer interaction mechanism. The consequence is that plasma blocks are accelerated by the nonlinear (ponderomotive) force with ion current densities above 1010 A/cm2. This provides basically new aspects for laser fusion using uncompressed solid DT fuel and a new kind of x-ray laser process may be possible
- …