142,611 research outputs found
Earnings Management and Long-Run Stock Underperformance of Private Placements
The study investigates whether private placement issuers manipulate their earnings around the time of issuance and the effect of earnings management on the long-run stock performance. We find that managers of U.S. private placement issuers tend to engage in income-increasing earnings management in the year prior to the issuance of private placements. We further speculate that earnings management serves as a likely source of investor over-optimism at the time of private placements. To support this speculation, we find evidence suggesting that the income-increasing accounting accruals made at the time of private placements predict the post-issue long-term stock underperformance. The study contributes to the large body of literature on earnings manipulation around the time of securities issuance
Recommended from our members
Analysing web search logs to determine session boundaries for user-oriented learning
Incremental learning approaches based on user search activities provide a means of building adaptive information retrieval systems. To develop more effective user-oriented learning techniques for the Web, we need to be able to identify a meaningful session unit from which we can learn. Without this, we run a high risk of grouping together activities that are unrelated or perhaps not from the same user. We are interested in detecting boundaries of sequences between related activities (sessions) that would group the activities for a learning purpose. Session boundaries, in Reuters transaction logs, were detected automatically. The generated boundaries were compared with human judgements. The comparison confirmed that a meaningful session threshold for establishing these session boundaries was confined to a 11-15 minute range
Robust H∞ filtering for time-delay systems with probabilistic sensor faults
Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, a new robust H∞ filtering problem is investigated for a class of time-varying nonlinear system with norm-bounded parameter uncertainties, bounded state delay, sector-bounded nonlinearity and probabilistic sensor gain faults. The probabilistic sensor reductions are modeled by using a random variable that obeys a specific distribution in a known interval [alpha,beta], which accounts for the following two phenomenon: 1) signal stochastic attenuation in unreliable analog channel and 2) random sensor gain reduction in severe environment. The main task is to design a robust H∞ filter such that, for all possible uncertain measurements, system parameter uncertainties, nonlinearity as well as time-varying delays, the filtering error dynamics is asymptotically mean-square stable with a prescribed H∞ performance level. A sufficient condition for the existence of such a filter is presented in terms of the feasibility of a certain linear matrix inequality (LMI). A numerical example is introduced to illustrate the effectiveness and applicability of the proposed methodology
Window Dressing in Reported Earnings
The article discusses the use of the term window dressing, a wide range of techniques for auditing, by audit clients to enhance the financial position of an entity through manipulated disclosures. The term refers to the reporting practices adopted by firms to distort earnings by changing the way stakeholders perceived the financial figures. A research suggests that firms must engage in the type of manipulative behavior for the purpose of economic incentives
Efficient generation of universal two-dimensional cluster states with hybrid systems
We present a scheme to generate two-dimensional cluster state efficiently.
The number of the basic gate-entangler-for the operation is in the order of the
entanglement bonds of a cluster state, and could be reduced greatly if one uses
them repeatedly. The scheme is deterministic and uses few ancilla resources and
no quantum memory. It is suitable for large-scale quantum computation and
feasible with the current experimental technology.Comment: 6 pages, 5 figure
- …
