1,570 research outputs found

    An automated method to build groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs

    Get PDF
    Abstract. Large-scale integrated hydrological models are important decision support tools in water resources management. The largest source of uncertainty in such models is the hydrostratigraphic model. Geometry and configuration of hydrogeological units are often poorly determined from hydrogeological data alone. Due to sparse sampling in space, lithological borehole logs may overlook structures that are important for groundwater flow at larger scales. Good spatial coverage along with high spatial resolution makes airborne time-domain electromagnetic (AEM) data valuable for the structural input to large-scale groundwater models. We present a novel method to automatically integrate large AEM data-sets and lithological information into large-scale hydrological models. Clay-fraction maps are produced by translating geophysical resistivity into clay-fraction values using lithological borehole information. Voxel models of electrical resistivity and clay fraction are classified into hydrostratigraphic zones using k-means clustering. Hydraulic conductivity values of the zones are estimated by hydrological calibration using hydraulic head and stream discharge observations. The method is applied to a Danish case study. Benchmarking hydrological performance by comparison of simulated hydrological state variables, the cluster model performed competitively. Calibrations of 11 hydrostratigraphic cluster models with 1–11 hydraulic conductivity zones showed improved hydrological performance with increasing number of clusters. Beyond the 5-cluster model hydrological performance did not improve. Due to reproducibility and possibility of method standardization and automation, we believe that hydrostratigraphic model generation with the proposed method has important prospects for groundwater models used in water resources management.</jats:p

    Detection and Recognition of Badgers Using Deep Learning

    Get PDF
    This paper describes the use of two different deep-learning algorithms for object detection to recognize different badgers. We use recordings of four different badgers under varying background illuminations. In total four different object detection algorithms based on deep neural networks are compared: The single shot multi-box detector (SSD) with the Inception-V2 or MobileNet as a backbone, and the faster region-based convolutional neural network (Faster R-CNN) combined with Inception-V2 or residual networks. Furthermore, two different activation functions are compared to compute probabilities that some badger is in the detected region: the softmax and sigmoid functions. The results of all eight models show that SSD obtains higher recognition accuracies (97.8%–98.6%) than Faster R-CNN (84.8%–91.7%). However, the training time of Faster R-CNN is much shorter than that of SSD. The use of different output activation functions seems not to matter much

    High-dimensional interior crisis in the Kuramoto-Sivashinsky equation

    Get PDF
    An investigation of interior crisis of high dimensions in an extended spatiotemporal system exemplified by the Kuramoto-Sivashinsky equation is reported. It is shown that unstable periodic orbits and their associated invariant manifolds in the Poincaré hyperplane can effectively characterize the global bifurcation dynamics of high-dimensional systems.A. C.-L. Chian, E. L. Rempel, E. E. Macau, R. R. Rosa, and F. Christianse

    Influence of Cardiac CT based disease severity and clinical symptoms on the diagnostic performance of myocardial perfusion

    Get PDF
    Danish Heart Foundation (Grant No. 15-R99-A5837-22920)Health Research Fund of Central Denmark RegionNational Institute for Health Research Biomedical Research Centre at Barts

    Influence of Cardiac CT based disease severity and clinical symptoms on the diagnostic performance of myocardial perfusion

    Get PDF
    Danish Heart Foundation (Grant No. 15-R99-A5837-22920)Health Research Fund of Central Denmark RegionNational Institute for Health Research Biomedical Research Centre at Barts

    Variation in antibiotic treatment for diabetic patients with serious foot infections: A retrospective observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetic foot infections are common, serious, and diverse. There is uncertainty about optimal antibiotic treatment, and probably substantial variation in practice. Our aim was to document whether this is the case: A finding that would raise questions about the comparative cost-effectiveness of different regimens and also open the possibility of examining costs and outcomes to determine which should be preferred.</p> <p>Methods</p> <p>We used the Veterans Health Administration (VA) Diabetes Epidemiology Cohorts (DEpiC) database to conduct a retrospective observational study of hospitalized patients with diabetic foot infections. DEpiC contains computerized VA and Medicare patient-level data for VA patients with diabetes since 1998, including demographics, ICD-9-CM diagnostic codes, antibiotics prescribed, and VA facility. We identified all patients with ICD-9-CM codes for cellulitis/abscess of the foot and then sub-grouped them according to whether they had cellulitis/abscess plus codes for gangrene, osteomyelitis, skin ulcer, or none of these. For each facility, we determined: 1) The proportion of patients treated with an antibiotic and the initial route of administration; 2) The first antibiotic regimen prescribed for each patient, defined as treatment with the same antibiotic, or combination of antibiotics, for at least 5 continuous days; and 3) The antibacterial spectrum of the first regimen.</p> <p>Results</p> <p>We identified 3,792 patients with cellulitis/abscess of the foot either alone (16.4%), or with ulcer (32.6%), osteomyelitis (19.0%) or gangrene (32.0%). Antibiotics were prescribed for 98.9%. At least 5 continuous days of treatment with an unchanged regimen of one or more antibiotics was prescribed for 59.3%. The means and (ranges) across facilities of the three most common regimens were: 16.4%, (22.8%); 15.7%, (36.1%); and 10.8%, (50.5%). The range of variation across facilities proved substantially greater than that across the different categories of foot infection. We found similar variation in the spectrum of the antibiotic regimen.</p> <p>Conclusions</p> <p>The large variations in regimen appear to reflect differences in facility practice styles rather than case mix. It is unlikely that all regimens are equally cost-effective. Our methods make possible evaluation of many regimens across many facilities, and can be applied in further studies to determine which antibiotic regimens should be preferred.</p
    • …
    corecore