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Abstract. Large-scale hydrological models are important de-

cision support tools in water resources management. The

largest source of uncertainty in such models is the hydros-

tratigraphic model. Geometry and configuration of hydroge-

ological units are often poorly determined from hydrogeo-

logical data alone. Due to sparse sampling in space, litholog-

ical borehole logs may overlook structures that are impor-

tant for groundwater flow at larger scales. Good spatial cov-

erage along with high spatial resolution makes airborne elec-

tromagnetic (AEM) data valuable for the structural input to

large-scale groundwater models. We present a novel method

to automatically integrate large AEM data sets and lithologi-

cal information into large-scale hydrological models. Clay-

fraction maps are produced by translating geophysical re-

sistivity into clay-fraction values using lithological borehole

information. Voxel models of electrical resistivity and clay

fraction are classified into hydrostratigraphic zones using k-

means clustering. Hydraulic conductivity values of the zones

are estimated by hydrological calibration using hydraulic

head and stream discharge observations. The method is ap-

plied to a Danish case study. Benchmarking hydrological per-

formance by comparison of performance statistics from com-

parable hydrological models, the cluster model performed

competitively. Calibrations of 11 hydrostratigraphic cluster

models with 1–11 hydraulic conductivity zones showed im-

proved hydrological performance with an increasing num-

ber of clusters. Beyond the 5-cluster model hydrological per-

formance did not improve. Due to reproducibility and pos-

sibility of method standardization and automation, we be-

lieve that hydrostratigraphic model generation with the pro-

posed method has important prospects for groundwater mod-

els used in water resources management.

1 Introduction

Large-scale distributed hydrological and groundwater mod-

els are used extensively for water resources management and

research. We use large scale to refer to models in the scale

of 100 to 1000 km2 or larger. Examples are water resources

management in water-scarce regions (Gräbe et al., 2012;

Laronne Ben-Itzhak and Gvirtzman, 2005), groundwater de-

pletion (Scanlon et al., 2012), contamination (Li and Mer-

chant, 2013; Mukherjee et al., 2007), agricultural impacts on

hydrogeological systems (Rossman and Zlotnik, 2013), and

well-capture zone delineation (Moutsopoulos et al., 2007;

Selle et al., 2013).

Such models are typically distributed, highly parameter-

ized, and depend on data availability to sufficiently represent

the modeled systems. Model parameterization includes, for

example, the saturated and unsaturated zone hydraulic prop-

erties, land use distribution and properties, and stream bed

configuration and properties. Hydrological forcing data such

as precipitation and temperature are also required. Parame-

ters are estimated through calibration, which requires hydro-

logical observation data commonly in the form of ground-

water hydraulic heads and stream discharges. Calibration
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data should be temporally and spatially representative for the

modeled system, and so should validation data sets.

One of the main challenges in modeling large-scale hydro-

geological systems is data scarcity (Refsgaard et al., 2010;

Zhou et al., 2014). Uncertainty inherent in distributed hy-

drological models is well known (Beven, 1989). Incorrect

system representation due to lack of data contributes to this

uncertainty, but the most important source of uncertainty in

distributed groundwater models is incorrect representation of

geological structures (Refsgaard et al., 2012; Seifert et al.,

2012; Zhou et al., 2014). In this paper, we refer to a 3-D sub-

surface model that delineates the structure of the hydraulic

conductivity (K) field as a hydrostratigraphic model.

Lithological borehole logs are the fundamental data source

for constructing hydrostratigraphic models. The modeling

process is often cognitive, but two-point geostatistical (He

et al., 2013; Strebelle, 2002) and multiple-point statistical

(e.g. Park et al., 2013) methods are also used. Geostatistical

methods have the advantage of uncertainty estimation. Spa-

tially inconsistent sampling pattern and scarcity make litho-

logical borehole logs alone insufficient to capture local-scale

geological structures relevant for simulation of groundwater

flow and contaminant transport. Cognitive methods have the

advantage of using information from geological maps to as-

sist interpretation of larger scale geological features.

Airborne electromagnetic (AEM) data are unique with re-

spect to good spatial coverage and high resolution. AEM is

the only technique that can provide subsurface information

with a resolution down to∼ 25 m in the horizontal and∼ 5 m

in the vertical at regional scales (Schamper et al., 2014). Ge-

ological structures and heterogeneity, which spatially scarce

borehole lithology data may overlook, are well resolved in

AEM data. Geophysical data and especially AEM data are

commonly used to support lithological borehole information

in geological mapping and modeling (Bosch et al., 2009;

Burschil et al., 2012; Høyer et al., 2011; Jørgensen et al.,

2010; Jørgensen et al., 2013; Steinmetz et al., 2014). Further-

more, multiple-point statistical methods are applied to invert

geophysical data, where a priori geological information is in-

corporated through training images (e.g. Caers and Hoffman,

2006; Lange et al., 2012; Lochbuhler et al., 2015). Although

uncertainty of the estimated structures is available from the

inversion, multiple-point statistical methods are applied at

scales smaller than large-scale hydrological models. He et

al. (2014) used transition probabilities (two-point statistics)

to integrate AEM data with borehole lithological data.

Current practice for cognitive hydrostratigraphic and geo-

logical model generation faces a number of challenges: struc-

tures that control groundwater flow may be overlooked in the

manual 3-D modeling process; geological models are sub-

jective, and different geological models may result in very

different hydrological predictions; structural uncertainty in-

herent in the model building process cannot be quantified.

Currently there is no standardized way of integrating high-

resolution AEM into hydrogeological models.

Sequential, joint and coupled hydrogeophysical inversion

methods, as defined by Ferré et al. (2009), have been devel-

oped and used extensively in hydrological and groundwa-

ter research. In sequential inversion, hydrological and geo-

physical models and inversions are set up and performed

separately (e.g. Binley et al., 2001; Kemna et al., 2002). In

joint inversion, hydrological and geophysical models are set

up separately but hydrological and geophysical parameters

are estimated simultaneously through a joint objective func-

tion (e.g. Hyndman and Gorelick, 1996; Hyndman et al.,

1994; Linde et al., 2006; Vilhelmsen et al., 2014). In cou-

pled inversion only one model is set up, the hydrological and

the geophysical data are evaluated by comparison to trans-

lated simulated hydrological states (e.g. Hinnell et al., 2010;

Kowalsky et al., 2005). The methods have been applied to

capture hydrological processes or estimate aquifer proper-

ties and structures from geophysical data. Hydrogeophysi-

cal inversion addresses hydrogeological property estimation

or delineation of hydrogeological structures. In the context

of large-scale groundwater models studies, Dam and Chris-

tensen (2003) and Herckenrath et al. (2013) translated be-

tween hydraulic conductivity and electrical resistivity to es-

timate hydraulic conductivity parameters of the subsurface

in a joint hydrogeophysical inversion framework. Petrophys-

ical relationships, however, are uncertain, partly because of

unknown physical relationship between geophysical and hy-

drological parameter space. The relationship may vary within

and/or between field sites depending on given conditions and

cannot be determined a priori. For electrical resistivity versus

hydraulic conductivity, relationships suggesting both positive

and negative correlation have been found (Purvance and An-

dricevic, 2000). Herckenrath et al. (2013) concluded that se-

quential hydrogeophysical inversion was preferred over joint

hydrogeophysical inversion due to the uncertainty associated

with the petrophysical relationship. Structural inversions are

often performed as purely geophysical inversions, where sub-

surface structures (that mimic geological or hydrogeological

features) are favored during inversion by choosing appropri-

ate regularization terms. An example is the layered and lat-

erally constrained inversion developed by Auken and Chris-

tiansen (2004), which respects vertically sharp and laterally

smooth boundaries found in sedimentary geology. Joint geo-

physical inversions have been used extensively to delineate

subsurface hydrogeological structures under the assumption

that multiple geophysical data sets carry information about

the same structural features of the subsurface (Christiansen

et al., 2007; Gallardo, 2003; Haber and Oldenburg, 1997) but

examples of successful joint hydrogeophysical inversion at

larger scales are rare.

As a response to lack of global petrophysical relation-

ships, clustering algorithms as an extension to structural in-

version methods have been applied in geophysics (Bedrosian

et al., 2007; Doetsch et al., 2010). Fuzzy c-means and k-

means clustering algorithms have been used with sequen-

tial inversion schemes (Paasche et al., 2006; Triantafilis and
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Buchanan, 2009) and joint inversion schemes (Di Giuseppe

et al., 2014; Paasche and Tronicke, 2007). These studies

have focused on the structural information contained in geo-

physical information, and hydrogeological or geological pa-

rameters of the subsurface are assumed uniform within the

delineated zones. This approach corresponds well with the

common practice in groundwater modeling where degrees of

freedom of the subsurface are reduced by zoning the subsur-

face.

We present an objective and semi-automatic method to

model large-scale hydrostratigraphy from geophysical resis-

tivity and lithological data. The method is a novel sequential

hydrogeophysical inversion for integration of AEM data into

the hydrological modeling process. Hydrostratigraphic struc-

tures and parameters are determined sequentially by geo-

physical/lithological and hydrological data, respectively.

As shown in Fig. 1, the 3-D subsurface zonation is com-

pleted in two parts: (1) a hydrostratigraphic cluster mod-

eling part, and (2) a hydrological modeling part. In part 1

the hydrostratigraphic structures are delineated (see Fig. 2c)

through k-means cluster analysis on resistivity data (see

Fig. 2a) and clay-fraction values (see Fig. 2b). To obtain

clay-fraction values, resistivity data are translated into clay-

fraction values by inverting for the parameters of a spatially

variable translator function (this is the petrophysical relation-

ship) (Foged et al., 2014). The cluster analysis is performed

on the principal components of normalized resistivity data

and clay-fraction values. In part 2 the K of each zone in the

hydrostratigraphic cluster model is estimated in a hydrolog-

ical model calibration using observations of hydraulic head

and stream discharge. The zones identified in the cluster anal-

ysis are assumed to have uniform hydrogeological properties,

and thus form the hydrostratigraphic model.

The method is applied to a Danish case study, for which

details and results are presented in the following sections.

2 Materials and methods

2.1 Study area

The Norsminde study area is located on the eastern coast of

Jutland, Denmark, and covers a land surface area of 154 km2.

Figure 3 shows a map of the area delineating the study area

boundary, streams, and hydrological data. An overview of

the geophysical and lithological data can be found in Foged

et al. (2014). Within 5–7 km from the sea, the land is flat

and rises only to 5–10 m a.s.l. (above sea level). Further to

the west, the land ascends into an up-folded end moraine at

elevations between 50 and 100 m a.s.l. The town of Odder

with approximately 20 000 inhabitants is located at the edge

of the flat terrain in the middle of the model domain.

Palaeogene, Neogene, and Quaternary deposits character-

ize the area. The Palaeogene deposits are thick clays, and

define the lower geological boundary. Neogene marine clays

Resistivity data 

+ borehole lithology 

Clay-fraction 

inversion 

Clay-fraction model 

+ resistivity data 

Hydrostratigraphic cluster modelling 

Hydrological model 

K-means cluster 

analysis 

Clay fraction 

model 

Hydraulic head + 

discharge data 

Hydrological model  

calibration 

Cluster-model 

Figure 1. Workflow of the two main parts in the method. Top grey

box: hydrostratigraphic cluster modeling using the structural infor-

mation carried in the geophysical data and lithological information.

Lower box in bold: hydrological calibration where hydraulic prop-

erties of the hydrostratigraphic zones are estimated using hydrolog-

ical data.

interbedded with alluvial sands overlay the Palaeogene de-

posits in the elevated northern and western parts of the model

domain. Quaternary deposits are glacial meltwater sediments

and tills found throughout the domain. The west–east striking

Boulstrup tunnel valley (2 km by 14 km) incises the Palaeo-

gene clay in the south (Jørgensen and Sandersen, 2006). The

unconsolidated fill materials are meltwater sand and gravel,

clay tills, and water-laid silt/clay.

Groundwater is abstracted for the drinking water sup-

ply, mainly from tunnel valley deposits and the elevated

southwestern part of the domain. The groundwater resource

is abstracted from 66 abstraction wells, with a total pro-

duction of 18 000–26 000 m3 yr−1, excluding smaller pri-

vate wells. Maximum annual abstraction from one well

is 12 400 m3 yr−1. Actual pumping variation among the

66 wells and inter-annual variation of pumping rates are un-

known. Abstraction is planned locally by water works and

only information about permissible annual rates has been ob-

tained for this study.

Groundwater hydraulic heads are available from 132 wells

at various depths; see Fig. 3 for the spatial distribution. Hy-

draulic head data are collected from the Danish national ge-

ological and hydrological database Jupiter (GEUS, n.d.).

Average annual precipitation is 840 mm yr−1 for the years

1990–2011. Most of the area is tile drained. The catchment

is drained by a network of 24 streams; the main stream is

gauged at the three stations 270035, 270002, and 270003

(see Fig. 3). Streams vary from ditch-like channels to meter

wide streams. Low and high flows, respectively, are on the

order of 0.05–0.5 and 0.5–5 m3 s−1. Daily stream discharge

data are available from three gauging stations. Discharges are

calculated from mean daily water table measurements and

www.hydrol-earth-syst-sci.net/19/3875/2015/ Hydrol. Earth Syst. Sci., 19, 3875–3890, 2015
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Figure 2. Northwest–southeast profiles (vertical exaggeration × 5), location is marked in Fig. 3. (a) Resistivity model, (b) clay-fraction

model, and (c) hydrostratigraphic cluster model for the 5-cluster case.

Figure 3. Map of the Norsminde study area. The map shows the lo-

cation of the three discharge gauging stations (blue triangles) along

the main river, hydraulic head observations for the calibration pe-

riod (red dots) and the validation period (black crosses), and ab-

straction wells (stars). The black dashed line delineates the model

domain of the hydrological model.

translated withQH curves, which are available from approx-

imately monthly discharge measurements.

Time-domain electromagnetic (EM) data collected

through ground and airborne surveys are available for

most of the study area. The AEM survey covers 2000 line

kilometers, equivalent to 106 770 1-D models and was

carried out with the SkyTEM101 system (Schamper et al.,

2014). Lithological information is available at approximately

700 boreholes. The borehole descriptions are from the Dan-

ish Jupiter database (GEUS, n.d.) and the level of detail and

quality varies from detailed lithological description at 1 m

intervals to more simple sand, clay, till descriptions at layer

interfaces. A thorough description of EM data collection

and processing and lithological borehole information can be

found in Foged et al. (2014).

2.2 Hydrostratigraphic model

Geophysical and lithological data are used to zone the sub-

surface. Geophysical data consist of resistivity values deter-

mined from the inversion of airborne and ground-based elec-

tromagnetic data. Lithological information is represented in

clay-fraction values determined through inversion within the

clay-fraction concept (CF concept). Zonation is performed in

3-D.

The CF concept is formulated as a least-squares inversion

problem to determine the parameters of a petrophysical re-

lationship (in the inversion this is the forward model) that

translates geophysical resistivities into clay-fraction values.

The concept is described in detail in Foged et al. (2014) and

Christiansen et al. (2014), and only a brief introduction is

given here. The inversion minimizes the difference between

observed clay fraction as determined from borehole litholog-

ical logs (in the inversion this is the data) and translated clay

fraction as determined from geophysical resistivity values (in

the inversion this is the forward data). Clay fraction expresses

relative accumulated thickness of clay material over an inter-

val. In this context clay refers to material described as clay in

lithological logs, and not clay minerals. Clay definitions in-

Hydrol. Earth Syst. Sci., 19, 3875–3890, 2015 www.hydrol-earth-syst-sci.net/19/3875/2015/
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clude, among others, clay till, marl clay, mica clay, and silty

clay. In the CF inversion, the translator function is a heuristic

two-parameter function defined on a regular 3-D grid that

is constrained vertically and horizontally. Discretization is

1000 m in the horizontal and 4 m in the vertical. The transla-

tor function is a scaled inverse error function (see Eq. (1) and

Fig. 4).

W(ρ)=0.5 · erfc

(
K ·

(
2ρ−mup−mlow

)
mup−mlow

)
,

K = erfc−1(0.05) (1)

mlow andmup are the model parameters of the translator func-

tion,W(ρ), that translates resistivity, ρ, into clay fraction.K

scales the error function so that W(ρ) equal 0.025 and 0.975

for resistivity values equal to mlow and mup, respectively

(see Fig. 4). The parameters of the translator function vary

throughout the 3-D grid. The objective function, with a data

misfit term and vertical and horizontal regularization term, is

minimized iteratively. The regularization constraint is a mea-

sure of weighted-squared difference between mlow and mup

at neighboring grid nodes, where the weighting is the reg-

ularization constraint. The final parameters of the translator

function translate geophysical resistivity values into CF val-

ues. An experimental semi-variogram is estimated from the

simulated CF values, and 2-D block kriging is used to obtain

a 3-D CF model. The resolution difference between litholog-

ical borehole data and AEM data is discussed in Foged et

al. (2014).

Delineation of subsurface structures is performed as a k-

means cluster analysis on geophysical resistivities and clay-

fraction values. Information contained in clay-fraction values

is to some extent duplicated in the geophysical resistivity val-

ues. Heterogeneity captured in the resistivity data, however,

is simplified in the translation to clay fraction; for example,

till and Palaeogene clay have, respectively, medium and low

resistivity values, while the clay fraction for both materials

is 1.

k-means clustering is a well-known cluster analysis that

finds groups in multivariate data based on a measure of sim-

ilarity between cluster members (Wu, 2012). Similarity is

defined as the minimum of squared Euclidean distances be-

tween each cluster member and cluster centroid, summed

over all cluster members. The number of clusters that the data

are divided into is defined by the user. We use the k-means

analysis implementation in MATLAB R2013a, which uses a

two-phase search, batch, and sequential, to minimize the risk

of reaching a local minimum.

Because clay-fraction values are correlated with geophysi-

cal resistivities, k-means clustering is performed on principal

components (PCs) of the original variables. Principal compo-

nents analysis (PCA) is an orthogonal transformation based

on data variances (Hotelling, 1933). PCA thus finds uncor-

related linear combinations of original data while obtaining

maximum variance of the linear combinations (Härdle and
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Figure 4. The translator function is the petrophysical relationship

used in the CF inversion. The parameters mlow and mup are varied

to move the translator function along the resistivity axis.

Simar, 2012). The uncorrelated PCs are a useful represen-

tation of the original variables as input to a k-means clus-

ter analysis. Original variables must be weighted and scaled

prior to PCA, as PCA is scale sensitive, and the lack of ex-

plicit physical meaning of the PCs makes weighting difficult.

Clay-fraction values are unchanged as they range between 0

and 1. The normalized resistivity values are calculated as

ρnorm=
logρ−logρmin

logρmax−logρmin
. Where ρmin and ρmax is minimum

and maximum resistivity values, respectively.

Eleven hydrostratigraphic cluster models consisting of 1–

11 zones are set up and calibrated.

2.3 Hydrological model

Hydrological data are used to parameterize the structures of

the hydrostratigraphic model. Stream discharges and ground-

water hydraulic heads are used as observation data in the hy-

drological calibration.

The hydrological model is set up using MIKE SHE (Ab-

bott et al., 1986; Graham and Butts, 2005), which is a phys-

ically based hydrological model code simulating evapotran-

spiration, the unsaturated zone, overland flow, and saturated

flow, while stream discharge is simulated by coupling with

the MIKE 11 routing model code.

2.3.1 Hydrological model parameterization

The model has a horizontal discretization of 100 m× 100 m,

and a vertical discretization of 5 m following topography.

The uppermost layer is 10 m thick for numerical stabil-

ity, which is not expected to negatively impact river dis-

charge as this is largely controlled by drainage. Because the

model represents a catchment, all land boundaries are de-

fined as no-flow boundary conditions following topographi-

cal highs. Constant head boundary conditions are defined for

www.hydrol-earth-syst-sci.net/19/3875/2015/ Hydrol. Earth Syst. Sci., 19, 3875–3890, 2015
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sea boundaries, and the model domain extends 500 m into the

sea. Model grid cells 10 m below the Palaeogene clay surface

have been de-activated, due to the computational burden.

The unsaturated zone and evapotranspiration (ET) are

modeled using the two-layer water balance method devel-

oped to represent recharge and ET to/from the groundwa-

ter in shallow aquifer systems (Yan and Smith, 1994). The

reference evapotranspiration is calculated using Makkink’s

formula (Makkink, 1957). Soil water characteristics of the

five soil types and the associated 250 m grid product are de-

veloped and described by Borgesen and Schaap (2005) and

Greve et al. (2007), respectively. Land use data are obtained

from the DK-model2009, for which root-depth-dependent

vegetation types were developed (Højberg et al., 2010).

Stream discharge is routed using the kinematic wave

equation. The stream network is modified from the DK-

model2009 (Højberg et al., 2010) by adding additional cal-

culation points and cross sections. Groundwater interaction

with streams is simulated using a conductance parameter be-

tween aquifer and stream. Overland flow is simulated using

the Saint-Venant equations (DHI, 2012, 267–281). Manning

number and overland storage depth is 5 m1/3 s−1 and 10 mm,

respectively. Drainage parameters, drain time constant (s−1)

and drain depth (m) are uniform in space and time. Param-

eterization of spatial variable drain time constant relies on

direct drainage flow measurements, and Hansen et al. (2013)

found little variability in the estimated time constants and

no justification for a spatial variability judging from eight

hydrological performance criteria. Drain depth is 1 m below

terrain.

Saturated flow is modeled as anisotropic Darcy flow, xy to

z anisotropy being restricted to the orientation of the com-

putational model grid (DHI, 2012). A vertical anisotropy

of 1/10 is assumed. The saturated zone is parameterized with

the cluster models. The lower boundary of the saturated zone

is defined by the surface of the Palaeogene clay, available

in 100 m grid, and has a fixed horizontal K of 10−10 m s−1.

Specific yield and specific storage are fixed at 0.15 and

5× 10−5 m−1 for the entire domain.

2.3.2 Hydrological model calibration

Forward models are run from 1990 to 2003; the years 1990–

1994 serve as warm up period (this was found sufficient to

obtain stable conditions); the calibration period is from 2000

to 2003 and the validation period is from 1995 to 1999.

Composite-scaled sensitivities (Hill and Tiedeman, 2007)

were calculated based on local sensitivity analyses. Fig-

ure 5 shows calculated sensitivity for selected model param-

eters. Sensitivities of the parameters, which are shared by the

11 cluster models, are calculated for each cluster model. The

top panel in Fig. 5 shows sensitivities of the shared parame-

ters. The bars indicate the mean value of these sensitivities,

and the error bars mark the minimum and maximum value of

Kh Palaeo clay

Drainage

Riverbed leakage

Root depth factor

Mannings

Detention storage

0 0.02 0.04

Kh 1
Kh 2
Kh 3
Kh 4
Kh 5
Kv 1
Kv 2
Kv 3
Kv 4
Kv 5

Head observations

Composite scaled sensitivity
0 0.02 0.04

Discharge observations

Figure 5. Composite-scaled sensitivity values of selected parame-

ters in the hydrological model. Sensitivities are shown for head and

discharge observation separately. The two top plots show average,

minimum, and maximum sensitivity of the 11 hydrostratigraphic

cluster models. The two lower plots show sensitivity of subsurface

parameters given a 5-cluster model.Kh is horizontal hydraulic con-

ductivity and Kv is vertical hydraulic conductivity.

these sensitivities. The lower panel in Fig. 5 shows subsur-

face parameters for the 5-cluster model.

The following parameters are a part of the model calibra-

tion:

– The root-depth scaling factor, which was found sensi-

tive (see Fig. 5, top panel). Because root-depth values

vary inter-annually and between crop types, root-depth

sensitivity was determined by a root-depth scaling fac-

tor, which scales all root-depth values.

– The drain time constant. Especially considering dis-

charge observations, the model shows sensitivity to-

wards this parameter. Stream hydrograph peaks are con-

trolled by the drainage time constant (Stisen et al., 2011;

Vazquez et al., 2008).

– The river leakage coefficient.

– The horizontal hydraulic conductivities of all zones

of the 11 hydrostratigraphic cluster models. Figure 5

shows sensitivity to K of the zones of the 5-cluster

model. K of the zones is unknown; hence all K values

have been calibrated. Vertical K values are tied to hori-

zontalK with an anisotropy factor of 10. Initial horizon-

tal K values are 10−4, 10−6, or 10−8 m s−1 depending

on the mean clay-fraction value of a zone.

Hydrol. Earth Syst. Sci., 19, 3875–3890, 2015 www.hydrol-earth-syst-sci.net/19/3875/2015/



P. A. Marker et al.: Performance evaluation of groundwater model hydrostratigraphy 3881

Storage parameters were set to a priori values and not cali-

brated.

Calibration is performed using the Marquardt–Levenberg

local search optimization implemented in the parameter es-

timation software, PEST (Doherty, 2005). Observations are

632 hydraulic heads from 132 well filters and daily stream

discharge time series from three gauging stations (see Fig. 3).

Observation variances are estimated, and, in the absence of

information, observation errors were assumed to be uncorre-

lated. Objective functions for head and discharge have been

scaled to balance contributions to the total objective function.

The aggregated objective function, 8, shown in Eq. (2) is

the sum of the scaled objective function for head and dis-

charge. The subjective weight, ws, was determined through

trial and error by starting numerous calibration runs; ws was

chosen to be 0.8.

8= ws

Nh∑
i=1

(
hsim,i −hobs,i

σi

)2

+ (1−ws)

Nq∑
i=1

(
qsim,i − qobs,i

σi

)2

(2)

Hydraulic head observation errors are determined according

to the guidelines following Henriksen et al. (2003). They sug-

gest an error budget approach that accounts for contributions

from (1) the measurement (e.g. with dip meter), (2) inac-

curacy in vertical referencing of wells, (3) interpolation be-

tween computational nodes to observation well location, and

(4) heterogeneity that is not represented in the lumped com-

putational grid. The total error expresses the expected un-

certainty between observation and corresponding simulation.

The approach for estimating these uncertainties can be found

in Appendix A. Total errors amount to 0.95, 1.4, and 2.2 m.

Uncertainty of stream discharges is mainly due to transla-

tion from water stages to discharge (daily mean discharges).

Uncertainties originate from infrequent calibration of rating

curve, ice forming on streams, and especially stream bank

vegetation (Raaschou, 1991). Errors can be as large as 50 %.

Blicher (1991) estimated errors of 5 and 10 % on the water

stage measurement and rating curve, respectively. In cases of

very low streamflows (1 L s−1), Christensen et al. (1998) as-

signed a standard deviation of 200 % while flow of 50 and

5–10 L s−1 are assigned standard deviations of 5 and 25 %,

respectively. We have assigned an error of 20 % to all stream

discharge observations.

3 Results and discussion

First, we show results for the hydrological performance

of 11 hydrostratigraphic cluster models consisting of 1–

11 zones. Second, details of the cluster analysis for the case

of a 5-cluster hydrostratigraphy are shown. Finally, the clus-

ter model hydrological performance is benchmarked with

comparable hydrological models.
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Figure 6. Weighted RMSE of hydrological performance of hydros-

tratigraphic models consisting of 1 to 11 clusters. Data are shown

for all calibration observations. Blue lines are mean standard devia-

tion on log(K) values.

3.1 Calibration and validation of hydrological model

Figure 6 shows the weighted root mean square error (RMSE)

of model performances for a hydrostratigraphic cluster

model consisting of 1 to 11 zones, head and discharge, re-

spectively, is shown in Fig. 6a and b. The 1-cluster model is

a homogeneous representation of the subsurface resulting in

a uniform K field. The 1-cluster model represents a situation

where we have no information about the subsurface. Increas-

ing the number of clusters to represent the subsurface suc-

cessively adds more information from geophysical and litho-

logical data to the calibration problem. The weights used to

calculate weighted RMSE are the same weights as used in

Eq. (2).

Head and discharge contribute by approximately two-

thirds and one-third of the total objective function. From the

1-cluster to the 2-cluster model, weighted RMSE for dis-

charge is reduced by more than a factor 2. No significant im-

provement of the fit to discharge data is observed for more

than 2 clusters. Fit to head data improve almost by a factor

of 2 from the 1-cluster to the 2-cluster model. Improvement

of the fit to head data continues up to the 5-cluster represen-

tation of the subsurface. Improvements are a factor of 3 from

the 1-cluster to the 5-cluster model. Beyond the 5-cluster

model, the fit to head observations stagnates. The 7-cluster

and 9-cluster hydrostratigraphic models perform worse than

the 3-cluster model. The 8-, 10-, and 11-cluster models ob-

tain an equally good or better fit to head data compared to the

5-cluster model.

The blue lines in Fig. 6 illustrate mean standard deviation

on log(K) values of the cluster models based on the post-

calibration standard deviation of log(K) for each K zone.

Beyond the 4- and 5-cluster models, the precision of the es-

timated K values decrease. The mean standard deviations on

log(K) for the 4- and 5-cluster models are 0.12 and 0.15.

The corresponding widths of the 95 % confidence intervals

are between 15 and 90 % of the estimated K value for 3 out

of 4 zones and 3 out of 5 zones, respectively. Beyond the

5-cluster model, mean standard deviations on log(K) are be-
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Figure 7. 2000–2003 calibration and 1995–1999 validation period

performance statistics for the 11 hydrostratigraphic cluster models

consisting of 1–11 clusters. The top row shows RMSE and the bot-

tom row shows ME.

tween 0.17 and 0.27, and corresponding width of the 95 %

confidence intervals are largely above 100 % for all but two

zones.

With the combined information from weighted RMSE val-

ues and standard deviation on log(K) we are able to address

over-parameterization. The results indicate that we obtain

good fit to observations without over-parameterization with

a 3- to 5-cluster hydrostratigraphic model.

In this paper, we have discussed the performance of the

cluster models as a measure of fit to hydraulic head and

stream discharge observations. Hydrological models are typ-

ically used to predict transport, groundwater age, and capture

zones, which are sensitive to geological features. It is likely

that the optimal number of clusters is different for these ap-

plications. An analysis, as is presented here for head and dis-

charge, for predictive application is more difficult because

observations are often unavailable.

The hydrostratigraphic models are constructed under the

assumption that subsurface structures governing groundwa-

ter flow can be captured by structural information contained

in clay-fraction values (derived from lithological borehole

data) and geophysical resistivity values. If this is true, an

asymptotic improvement of the data fit would be expected

for increasing cluster numbers. However, as shown in Fig. 6,

this is not strictly the case: weighted RMSE of the 7-cluster

and 9-cluster models is higher than weighted RMSE of the

3-cluster, 6-cluster, and 8-cluster models. The likely expla-

nation is that the increasing number of clusters not only cor-

responds to pure cluster sub-division but also to relocation

of cluster interfaces in the 3-D model space. We expect the

difference in hydrological performance to be due to changes

in interface configuration.
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Figure 8. Histograms of (a) logarithmic geophysical resistivity val-

ues and (b) clay-fraction values. Cluster memberships of the val-

ues are identified by shades of grey and the histograms thus show

how resistivity values and clay-fraction values are represented in the

clusters. The histograms are shown as percentage of total number of

data values.

It is well known that an unsupervised k-means clustering

algorithm does not result in a unique solution, due to choice

of initial (and unknown) cluster centroids. We have sampled

the solution spaces (200 samples) of the eleven cluster mod-

els. Clustering the principal components of geophysical re-

sistivity data and clay-fraction values into 1 to 5 clusters

gives unique solutions. Clustering the principal components

of geophysical resistivity data and clay-fraction values into

6 to 11 clusters results in three or more solutions. However,

the non-unique solutions have different objective functions

(squared Euclidean distance between points and centroids).

In all cases the cluster model with the lowest objective func-

tion was chosen as the best solution.

Figure 7 shows RMSE and mean errors for calibration and

validation periods for all eleven cluster models. Data used

to calculate the statistics are a temporally split sample from

35 wells, which have observations both in the calibration and

validation period, and the discharge is for stations 270002

and 270003.

The cluster models perform similarly in the periods 2000–

2003 and 1995–1999. With respect to RMSE, Fig. 7a, for

head the validation period is approximately 10 % worse than

the calibration period. RMSE for discharge (Fig. 7b) is lower

in the validation, approximately one-third of the calibration

values. Mean errors for head (Fig. 7c) are lower and higher,

respectively. The hydrological models analyzed in this study

generally under-simulate the average discharge.

3.2 The cluster model

Figure 8 presents histograms of clay-fraction values and re-

sistivity values and how the values are represented in the

five clusters, which was chosen to be the optimal number.

Counts are shown as percentages of the total number of pix-

els in the domain. The histograms in Fig. 8 show that the

clay fraction attribute separates high resistivity/low clay frac-

tion (sandy sediments) from other high-resistivity portions of
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Figure 9. Data cloud of geophysical resistivity values and clay-

fraction values. Dotted black lines indicate cluster interfaces and

cluster are labeled with numbers. The cloud color represents bin-

wise data density (300 bins), which are shown in logarithmic scale.

the domain, while the resistivity attribute separates low resis-

tivity/high clay fraction (clayey sediments) from other high

clay-fraction portions. High resistivity/low clay-fraction val-

ues are represented by clusters 1, 3, and 4, and low resistiv-

ity/high clay fraction are represented by clusters 2 and 5 (see

Fig. 8a). Figure 9 shows the data cloud that forms the ba-

sis of the clustering. The data cloud is binned into 300 bins

in each dimension and the color of the cloud shows the bin-

wise data density. We see that cluster boundaries appear as

straight lines in the attribute space. Values with a low resis-

tivity and corresponding high clay fraction, mainly clusters 2

and 5, populate more than half of the domain. Clay is ex-

pected to dominate this part of the domain.

The results of the cluster analysis are presented with

respect to geophysical resistivity and clay-fraction values,

while the cluster analysis is performed on the PC of geophys-

ical resistivity and clay-fraction values. The first PC explains

the information where the two original variables, log resis-

tivity and clay fraction, are inversely correlated. This corre-

sponds to the situation where a clay fraction of 1 coincides

with a low resistivity value, and vice versa for clay-fraction

values of 0 and high resistivities. This is the information that

we expect, i.e. our understanding of how geophysical resis-

tivities relate to lithological information as represented by the

translator function (Eq. 1) (defined under the assumption that

variation in geophysical resistivities with respect to litholog-

ical information depends on the presence of clay materials).

Thus, the first principal component is the “clay” information

in the geophysical resistivities. The second PC is less straight

forward to interpret. Ideally, the second PC represents the

data pairs where the resistivity response is not dominated or

explained by lithological clay material. This might reflect a

situation where a low resistivity value – and its associated

low clay-fraction value – is a result of a sandy material with

Table 1. Calibration and validation statistics for the temporally split

sample consisting of observations from 35 wells, which have obser-

vations both in the calibration and validation period, and discharge

stations 270003 and 270002.

5-cluster model

Weighted RMSE ME

RMSE (–)

Calibration head (m) 1.63 1.99 −0.79

2000–2003 discharge (m3 s−1) 0.338 0.278 −0.0107

Validation head (m) 1.85 2.24 −0.981

1995–1999 discharge (m3 s−1) 0.524 0.203 −0.0354

a high pore-water electrical conductivity due to elevated dis-

solved ion concentrations. The second PC can also be a result

of the CF conceptualization. Clay till, categorized as clay in

the CF inversion, can have electrical resistivities up to 60�m

(Jørgensen et al., 2005; Sandersen et al., 2009), which will

yield a high clay fraction coinciding with a relatively high

geophysical resistivity.

Electromagnetic methods are sensitive to the electrical re-

sistivity of the formation, which is commonly dominated

by clay-mineral content, dissolved ions in the pore water

and saturation. Groundwater quality data are available at nu-

merous sites in the domain. Pore-water electrical conductiv-

ity (EC) values were gathered from the coast and inland fol-

lowing the Boulstrup tunnel valley. From the coast to 12 km

inland values are stable around 50–70 mS m−1 at 28 wells

with varying filter depths. Four outliers with EC ranging be-

tween 120 and 250 mS m−1 were identified at various loca-

tions and depths. No trend due to salinity from the coast was

identified. In theory, variations in formation electrical resis-

tivity that are not due to lithological changes will implicitly

be taken into account by spatial variation of the translator

function in the CF inversion. If there is a region in the mod-

eled domain where the electromagnetic signal, as well as the

resulting resistivity value, is affected by pore-water salinity

(low resistivity value is due to salinity and not clay content)

and there is available borehole information, the parameters

of the translator function will adjust to obtain lower values in

order to translate a low resistivity value to a low clay-fraction

value.

3.3 Benchmarking hydrological performance

Table 1 shows RMSE and mean error (ME) for head and dis-

charge based on the 5-cluster model. Weighted RMSE for

discharge is below 1, indicating that discharge is over fit-

ted. The standard deviation of discharge is 20 % of the ob-

servation, which is a conservative definition. As presented in

the methods, section errors may vary between 5 and 50 %.

The 1995–1999 hydrograph and scatter plot in Fig. 10 for

the 270002 gauging station show good fit to data. Peak and

low flows are fitted, but baseflow recession is generally not
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Table 2. Performance statistics of four Danish hydrological models that are comparable to the Norsminde model. All models are set up using

MIKE SHE.

Study RMSE ME Horizontal Model Comment

(m) (m) discretization size

5-cluster model 1.99 −0.79 100 m 156 km2

Stisen et al. (2011) 3.9 1.2 500 m 3500 km2 Mean of calibration using seven different calibration setups

Seifert et al. (2012) 3.03–6.34 −1.17–0.605 200 m 465 km2 Min and max of calibration of six different geological models

He et al. (2015) 4.85 – 100 m 101 km2 Mean using borehole-based geology

Madsen (2003) 1.08 0.19 – 440 km2 Balanced Pareto optimum
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Figure 10. Observed and simulated stream discharge at stations 270003 (top row panels) and 270002 (bottom row panels) from the 1995–

1999 validation period. To the left stream discharge hydrographs are shown and to the right scatter plots of observed vs. simulated values. In

the scatter plots the dotted and dashed red lines mark misfits of 20 and 50 %, respectively.

matched very well. At gauging station 270003, the model

fails to capture dynamics and relative magnitudes of the ob-

servations. Peak as well as low flows are under-simulated,

which is clearly demonstrated in the scatter plot for sta-

tion 270003 in Fig. 10. With respect to head, the model

under-simulates in the elevated parts of the domain (head

above 50 m) (see Fig. 11). The head values below 20 m repre-

sent the Boulstrup tunnel valley, where head is fitted the best.

With weighted RMSE for head of 1.63 and 1.85 the model

is almost 2 SD (standard deviations) from fitting head data.

Assuming head observation error estimates are correct, this

indicates model deficiencies such as structural errors and/or

forcing data errors.

Figure 12a–b show distributed head results. Generally hy-

draulic head in the tunnel valley is disconnected from the

elevated terrain (Fig. 12a), and groundwater overall flows to-

wards the sea. Figure 12b shows errors (obs–sim) between

observed and simulated heads for 1995–1999. The largest er-

rors are found in the southeastern part of the domain, where
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Figure 11. Scatter plot of observed and simulated heads values from

the 1995–1999 validation period. Dashed lines mark misfits larger

than 10 m and dotted lines mark misfits larger than 5 m.
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Figure 12. Distributed head results for the validation period 1995–1999; (a) 5-cluster model simulated hydraulic head at 27 July 1997 at

0 m a.m.s.l; (b) Errors (observed–simulated) between observed and simulated head.

discharge station 270003, with the worst fit, is located (see

Fig. 10, top row panels).

We have compared the hydrological performance of the

Norsminde model based on the 5-cluster hydrostratigraphic

model with similar Danish hydrological models. We have

chosen Danish models due to comparability with respect to

data density and quality, and hydrostratigraphy. The model

performances are compared based on RMSE and ME of sim-

ulated heads; see Table 2, as these statistics are reported

in the studies. The horizontal discretization of the mod-

els is 100, 200, and 500 m, and the models cover between

202 and 3500 km2. We can see that the 5-cluster model is

comparable with the other models.

3.4 Advantages and limitations

We have presented a method for automatic generation of

hydrostratigraphic models from AEM and lithological data

for groundwater model applications. Other automatic meth-

ods of integrating AEM data into geological models are

geostatistical methods presented by, for example, Gunnink

et al. (2012), using artificial neural networks, or He et

al. (2014), using transition probabilities.

The risk of misinterpretation of AEM data, due to effects

of saturation, water quality, depth and material dependent

resolution, and vertical shielding, are higher with an auto-

matic approach compared to a cognitive approach, as these

effects may be identified by a geologist during the modeling

process. AEM data can be integrated into geological models

using cognitive methods, for example, as presented by Jør-

gensen et al. (2013), who provide an insightful discussion of

the pros and cons of automatic versus cognitive geological

modeling from AEM data.

Geological knowledge, which can be incorporated into

cognitive geological models (Royse, 2010; Scharling et al.,

2009; Sharpe et al., 2007), cannot be included in automati-

cally generated models. Geological knowledge may identify

continuity/discontinuity of geological layers, or discriminate

between materials based on stratigraphy or depositional en-

vironment. For regional-scale groundwater flow, characteri-

zation of sedimentation patterns and sequences may not be

relevant, but at smaller scales this information is valuable for

transport modeling.

The hydrostratigraphic cluster model presented in this pa-

per does not represent a lithological model, but has the ad-

vantage of incorporating close to all the structural infor-

mation contained in the large AEM data sets in a fast and

well-documented way. This is not possible in practice for

cognitive methods due to spatial complexity and the large

amount of AEM data. For hydrological applications hydros-

tratigraphic model uncertainty, and the resulting hydrologi-

cal prediction uncertainty, has great value. We believe that

the cluster model approach presented in this paper can be

extended to address structural uncertainty and its impact on

hydrological predictions. Cognitive geological model uncer-

tainty is difficult to quantify.

The CF model is to some degree influenced by smooth-

ing resulting from the AEM data inversion and CF inversion,

and the finial kriging of CF values to a regular grid. Smooth-

ing effects causing resistivity transition zones are inconsis-

tent with our understanding of geological interfaces. In future

studies different geophysical inversion schemes will be com-

pared to evaluate the effect of smoothing on the final cluster

model. This work will partly evaluate how the smooth tran-

sition zones impact hydrological results. We expect the geo-

logical interfaces to lie in the transition zones, but the exact

location is unknown. We will address this problem by gen-

erating several cluster models that identify zonal divides at

different locations in the transition zones. Hereby hydrologi-

cal uncertainty as a result of the transition zones may also be

assessed.

4 Conclusions

We have presented an automated workflow to parameter-

ize and calibrate a large-scale hydrological model based on

AEM and borehole data. The result is a competitive hydro-

logical model that performs adequately compared to similar

hydrological models. From geophysical resistivity data and

clay-fraction values, we delineate hydrostratigraphic zones,
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whose hydrological properties are estimated in a hydrologi-

cal model calibration. The method allows for semi-automatic

generation of reproducible hydrostratigraphic models. Re-

producibility is naturally inherent as the method is data

driven and thus, to a large extent, also objective.

The number of zones in the hydrostratigraphic model must

be determined as part of the cluster analysis. We have pro-

posed that hydrological data, through hydrological calibra-

tion and validation, guide this choice. Based on fit to head

and discharge observation and calibration parameter standard

deviations, results indicate that the 3- and 5-cluster models

give the optimal performance.

Distributed groundwater models are used globally to man-

age groundwater resources. Today large-scale AEM data sets

are acquired for mapping groundwater resources on a routine

basis around the globe. There is a lack of knowledge on how

to incorporate the results of these surveys into groundwater

models. We believe the proposed method has the potential to

solve this problem.

Hydrol. Earth Syst. Sci., 19, 3875–3890, 2015 www.hydrol-earth-syst-sci.net/19/3875/2015/



P. A. Marker et al.: Performance evaluation of groundwater model hydrostratigraphy 3887

Appendix A: Observation errors

Hydraulic head observation errors have been estimated using

an error budget:

σ 2
total = σ

2
meas+ σ

2
elev+ σ

2
int+ σ

2
hetereo+ σ

2
unknown.

Quantitative estimates of the different error sources are to a

large extent based on data from the Danish Jupiter database.

Head measurements are typically carried out with a dip

meter, and occasionally pressure transducers are used. Infor-

mation about which measurement technique has been used

for the individual observations is not clear from the Jupiter

database. It is assumed that dip meters have been used and

σmeas has been determined to be 0.05 m for all observations.

Well elevations are referenced using different techniques.

The elevation can be determined from a 1 : 25 000 topo-

graphic map, by leveling or by differential GPS. The inaccu-

racies for using topographic maps and DGPS measurements

are on the order of, respectively, 1–2 m and centimeters. The

Jupiter database can have information about the referencing

techniques, but this information is rarely supplied. An im-

plicit information source is the number of decimal places the

elevations have in the database. Elevation information is sup-

plied with 0, 1, or 2 decimal places. For the wells where the

reference technique is available (checked for cases with to-

pographic map and DGPS only) the decimal places reflect

accuracy of the referencing technique used. From this infor-

mation decimal places of 0, 1, and 2 have been associated

with σelev of 2, 1, and 0.1 m, respectively.

Errors due to interpolation depend on horizontal dis-

cretization of the hydrological model and the hydraulic gradi-

ent. Sonnenborg and Henriksen (2005, chapter 12) suggested

it be estimated as σint= 0.5 ·1x · J , where 1x is horizontal

discretization and J is hydraulic gradient. The model domain

has been divided into three groups for which the error from

interpolation has been calculated. The three areas are geo-

logically different: north is glacial tectonically deformed, the

west has similar Miocene and glacial meltwater sediments,

and the Palaeogene tunnel valley. Hydraulic gradients of the

Miocene glacial west and the Palaeogene tunnel valley are

between 0.001 and 0.002. The Miocene glacial area and the

Palaeogene tunnel valley areas were thus considered as one

with a σint of 0.07 m. The glacial tectonic area has an esti-

mated hydraulic gradient of 0.01 and thus associated with a

σint of 0.6 m.

Within-cell (hydrological model grid) heterogeneity af-

fecting the hydraulic head was estimated using data from

eight wells that are located within the same hydrological

model grid. Temporally coinciding head observations from

the period 2001 and 2002 were used. The error is evaluated

as the standard deviation of a linear plane fitted through the

observed heads at the eight boreholes. This has been done for

three dates, which gives a mean σhetereo of 0.53 m.

σunknown was set to 0.5 m.
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