143 research outputs found

    A Java Program for LRE-Based Real-Time qPCR that Enables Large-Scale Absolute Quantification

    Get PDF
    Background: Linear regression of efficiency (LRE) introduced a new paradigm for real-time qPCR that enables large-scale absolute quantification by eliminating the need for standard curves. Developed through the application of sigmoidal mathematics to SYBR Green I-based assays, target quantity is derived directly from fluorescence readings within the central region of an amplification profile. However, a major challenge of implementing LRE quantification is the labor intensive nature of the analysis. Findings: Utilizing the extensive resources that are available for developing Java-based software, the LRE Analyzer was written using the NetBeans IDE, and is built on top of the modular architecture and windowing system provided by the NetBeans Platform. This fully featured desktop application determines the number of target molecules within a sample with little or no intervention by the user, in addition to providing extensive database capabilities. MS Excel is used to import data, allowing LRE quantification to be conducted with any real-time PCR instrument that provides access to the raw fluorescence readings. An extensive help set also provides an in-depth introduction to LRE, in addition to guidelines on how to implement LRE quantification. Conclusions: The LRE Analyzer provides the automated analysis and data storage capabilities required by large-scale qPCR projects wanting to exploit the many advantages of absolute quantification. Foremost is the universal perspective afforded by absolute quantification, which among other attributes, provides the ability to directly compare quantitative data produced by different assays and/or instruments. Furthermore, absolute quantification has important implications for gene expression profiling in that it provides the foundation for comparing transcript quantities produced by any gene with any other gene, within and between samples

    Multiplex quantitative PCR for single-reaction genetically modified (GM) plant detection and identification of false-positive GM plants linked to Cauliflower mosaic virus (CaMV) infection.

    Get PDF
    BACKGROUND:Most genetically modified (GM) plants contain a promoter, P35S, from the plant virus, Cauliflower mosaic virus (CaMV), and many have a terminator, TNOS, derived from the bacterium, Agrobacterium tumefaciens. Assays designed to detect GM plants often target the P35S and/or TNOS DNA sequences. However, because the P35S promoter is derived from CaMV, these detection assays can yield false-positives from non-GM plants infected by this naturally-occurring virus. RESULTS:Here we report the development of an assay designed to distinguish CaMV-infected plants from GM plants in a single multiplexed quantitative PCR (qPCR) reaction. Following initial testing and optimization via PCR and singleplex-to-multiplex qPCR on both plasmid and plant DNA, TaqMan qPCR probes with different fluorescence wavelengths were designed to target actin (a positive-control plant gene), P35S, P3 (a CaMV-specific gene), and TNOS. We tested the specificity of our quadruplex qPCR assay using different DNA extracts from organic watercress and both organic and GM canola, all with and without CaMV infection, and by using commercial and industrial samples. The limit of detection (LOD) of each target was determined to be 1% for actin, 0.001% for P35S, and 0.01% for both P3 and TNOS. CONCLUSIONS:This assay was able to distinguish CaMV-infected plants from GM plants in a single multiplexed qPCR reaction for all samples tested in this study, suggesting that this protocol is broadly applicable and readily transferrable to any interested parties with a qPCR platform

    SNPs and real-time quantitative PCR method for constitutional allelic copy number determination, the VPREB1 marker case

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>22q11.2 microdeletion is responsible for the DiGeorge Syndrome, characterized by heart defects, psychiatric disorders, endocrine and immune alterations and a 1 in 4000 live birth prevalence. Real-time quantitative PCR (qPCR) approaches for allelic copy number determination have recently been investigated in 22q11.2 microdeletions detection. The qPCR method was performed for 22q11.2 microdeletions detection as a first-level screening approach in a genetically unknown series of patients with congenital heart defects. A technical issue related to the <it>VPREB1 </it>qPCR marker was pointed out.</p> <p>Methods</p> <p>A set of 100 unrelated Italian patients with congenital heart defects were tested for 22q11.2 microdeletions by a qPCR method using six different markers. Fluorescence In Situ Hybridization technique (FISH) was used for confirmation.</p> <p>Results</p> <p>qPCR identified six patients harbouring the 22q11.2 microdeletion, confirmed by FISH. The <it>VPREB1 </it>gene marker presented with a pattern consistent with hemideletion in one 3 Mb deleted patient, suggestive for a long distal deletion, and in additional five non-deleted patients. The long distal 22q11.2 deletion was not confirmed by Comparative Genomic Hybridization. Indeed, the <it>VPREB1 </it>gene marker generated false positive results in association with the rs1320 G/A SNP, a polymorphism localized within the <it>VPREB1 </it>marker reverse primer sequence. Patients heterozygous for rs1320 SNP, showed a qPCR profile consistent with the presence of a hemideletion.</p> <p>Conclusions</p> <p>Though the qPCR technique showed advantages as a screening approach in terms of cost and time, the <it>VPREB1 </it>marker case revealed that single nucleotide polymorphisms can interfere with qPCR data generating erroneous allelic copy number interpretations.</p

    Chronic insulin treatment of diabetes does not fully normalize alterations in the retinal transcriptome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetic retinopathy (DR) is a leading cause of blindness in working age adults. Approximately 95% of patients with Type 1 diabetes develop some degree of retinopathy within 25 years of diagnosis despite normalization of blood glucose by insulin therapy. The goal of this study was to identify molecular changes in the rodent retina induced by diabetes that are not normalized by insulin replacement and restoration of euglycemia.</p> <p>Methods</p> <p>The retina transcriptome (22,523 genes and transcript variants) was examined after three months of streptozotocin-induced diabetes in male Sprague Dawley rats with and without insulin replacement for the later one and a half months of diabetes. Selected gene expression changes were confirmed by qPCR, and also examined in independent control and diabetic rats at a one month time-point.</p> <p>Results</p> <p>Transcriptomic alterations in response to diabetes (1376 probes) were clustered according to insulin responsiveness. More than half (57%) of diabetes-induced mRNA changes (789 probes) observed at three months were fully normalized to control levels with insulin therapy, while 37% of probes (514) were only partially normalized. A small set of genes (5%, 65 probes) was significantly dysregulated in the insulin-treated diabetic rats. qPCR confirmation of findings and examination of a one month time point allowed genes to be further categorized as prevented or rescued with insulin therapy. A subset of genes (Ccr5, Jak3, Litaf) was confirmed at the level of protein expression, with protein levels recapitulating changes in mRNA expression.</p> <p>Conclusions</p> <p>These results provide the first genome-wide examination of the effects of insulin therapy on retinal gene expression changes with diabetes. While insulin clearly normalizes the majority of genes dysregulated in response to diabetes, a number of genes related to inflammatory processes, microvascular integrity, and neuronal function are still altered in expression in euglycemic diabetic rats. Gene expression changes not rescued or prevented by insulin treatment may be critical to the pathogenesis of diabetic retinopathy, as it occurs in diabetic patients receiving insulin replacement, and are prototypical of metabolic memory.</p

    Multi-Modal Proteomic Analysis of Retinal Protein Expression Alterations in a Rat Model of Diabetic Retinopathy

    Get PDF
    As a leading cause of adult blindness, diabetic retinopathy is a prevalent and profound complication of diabetes. We have previously reported duration-dependent changes in retinal vascular permeability, apoptosis, and mRNA expression with diabetes in a rat model system. The aim of this study was to identify retinal proteomic alterations associated with functional dysregulation of the diabetic retina to better understand diabetic retinopathy pathogenesis and that could be used as surrogate endpoints in preclinical drug testing studies.A multi-modal proteomic approach of antibody (Luminex)-, electrophoresis (DIGE)-, and LC-MS (iTRAQ)-based quantitation methods was used to maximize coverage of the retinal proteome. Transcriptomic profiling through microarray analysis was included to identify additional targets and assess potential regulation of protein expression changes at the mRNA level. The proteomic approaches proved complementary, with limited overlap in proteomic coverage. Alterations in pro-inflammatory, signaling and crystallin family proteins were confirmed by orthogonal methods in multiple independent animal cohorts. In an independent experiment, insulin replacement therapy normalized the expression of some proteins (Dbi, Anxa5) while other proteins (Cp, Cryba3, Lgals3, Stat3) were only partially normalized and Fgf2 and Crybb2 expression remained elevated.These results expand the understanding of the changes in retinal protein expression occurring with diabetes and their responsiveness to normalization of blood glucose through insulin therapy. These proteins, especially those not normalized by insulin therapy, may also be useful in preclinical drug development studies

    Transcriptomic comparison of the retina in two mouse models of diabetes

    Get PDF
    Mouse models of type I diabetes offer the potential to combine genetic approaches with other pharmacological or physiological manipulations to investigate the pathophysiology and treatment of diabetic retinopathy. Type I diabetes is induced in mice through chemical toxins or can arise spontaneously from genetic mutations. Both models are associated with retinal vascular and neuronal changes. Retinal transcriptomic responses in C57BL/6J mice treated with streptozotocin and Ins2Akita/+ were compared after 3Β months of hyperglycemia. Specific gene expression changes suggest a neurovascular inflammatory response in diabetic retinopathy. Genes common to the two models may represent the response of the retina to hyperglycemia, while changes unique to each model may represent time-dependent disease progression differences in the various models. Further investigation of the commonalities and differences between mouse models of type I diabetes may define cause and effect events in early diabetic retinopathy disease progression

    Impact of Reference Gene Selection for Target Gene Normalization on Experimental Outcome Using Real-Time qRT-PCR in Adipocytes

    Get PDF
    Background: With the current rise in obesity-related morbidities, real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) has become a widely used method for assessment of genes expressed and regulated by adipocytes. In order to measure accurate changes in relative gene expression and monitor intersample variability, normalization to endogenous control genes that do not change in relative expression is commonly used with qRT-PCR determinations. However, historical evidence has clearly demonstrated that the expression profiles of traditional control genes (e.g., b-actin, GAPDH, a-tubulin) are differentially regulated across multiple tissue types and experimental conditions. Methodology/Principal Findings: Therefore, we validated six commonly used endogenous control genes under diverse experimental conditions of inflammatory stress, oxidative stress, synchronous cell cycle progression and cellular differentiation in 3T3-L1 adipocytes using TaqMan qRT-PCR. Under each study condition, we further evaluated the impact of reference gene selection on experimental outcome using examples of target genes relevant to adipocyte function and differentiation. We demonstrate that multiple reference genes are regulated in a condition-specific manner that is not suitable for use in target gene normalization. Conclusion/Significance: Data are presented demonstrating that inappropriate reference gene selection can have profound influence on study conclusions ranging from divergent statistical outcome to inaccurate data interpretation of significan

    Reliability of Quantitative Real-Time PCR for Bacterial Detection in Cystic Fibrosis Airway Specimens

    Get PDF
    The cystic fibrosis (CF) airway microbiome is complex; polymicrobial infections are common, and the presence of fastidious bacteria including anaerobes make culture-based diagnosis challenging. Quantitative real-time PCR (qPCR) offers a culture-independent method for bacterial quantification that may improve diagnosis of CF airway infections; however, the reliability of qPCR applied to CF airway specimens is unknown. We sought to determine the reliability of nine specific bacterial qPCR assays (total bacteria, three typical CF pathogens, and five anaerobes) applied to CF airway specimens. Airway and salivary specimens from clinically stable pediatric CF subjects were collected. Quantitative PCR assay repeatability was determined using triplicate reactions. Split-sample measurements were performed to measure variability introduced by DNA extraction. Results from qPCR were compared to standard microbial culture for Pseudomonas aeruginosa, Staphylococcus aureus, and Haemophilus influenzae, common pathogens in CF. We obtained 84 sputa, 47 oropharyngeal and 27 salivary specimens from 16 pediatric subjects with CF. Quantitative PCR detected bacterial DNA in over 97% of specimens. All qPCR assays were highly reproducible at quantities β‰₯102 rRNA gene copies/reaction with coefficient of variation less than 20% for over 99% of samples. There was also excellent agreement between samples processed in duplicate. Anaerobic bacteria were highly prevalent and were detected in mean quantities similar to that of typical CF pathogens. Compared to a composite gold standard, qPCR and culture had variable sensitivities for detection of P. aeruginosa, S. aureus and H. influenzae from CF airway samples. By reliably quantifying fastidious airway bacteria, qPCR may improve our understanding of polymicrobial CF lung infections, progression of lung disease and ultimately improve antimicrobial treatments
    • …
    corecore