1,601 research outputs found
Numerical investigation of flow structures resulting from the interaction between an oblique detonation wave and an upper expansion corner
Wedge-induced oblique detonation waves (ODWs) have been studied widely, but their interactions with complicated geometries have not been fully addressed. In this study, we investigate ODW interaction with a deflected upper corner due to confinement change upstream of the ODW. Numerical simulations are conducted using the reactive Euler equations with a two-step induction-reaction kinetic model. Two ODWs without the upper wall deflection are first simulated to resolve the basic structures with inflow Mach numbers M-0 = 6 and 7. Thereafter, we introduce a deflected upper confinement, resulting in a new wave configuration. This wave is characterized by a post-turning, triangular recirculation zone coupled with a gaseous wedge connecting the deflection point and ODW surface. A parametric study is performed to analyse the effects of the deflection location, deflection angle and activation energy of the heat release reaction. The results reveal that the wave configuration is due to the evolution of ODW decoupling in an expanded supersonic flow. We further study the surface stability and structural unsteadiness arising for M-0 = 6. Upstream-travelling transverse waves are observed for the first time, and effects of different parameters on the surface instability are analysed via fast Fourier transforms. Two destabilizing mechanisms of ODW structures are proposed, one from the post-surface thermal choking and the other from the enhanced surface instability
Slow and fast diffusion in a lead sulphate gravity separation process
A model for the growth of lead sulphate particles in a gravity separation system
from the crystal glassware industry is presented. The lead sulphate particles are an undesirable
byproduct, and thus the model is used to ascertain the optimal system temperature configuration
such that particle extraction is maximised. The model describes the evolution of a single,
spherical particle due to the mass flux of lead particles from a surrounding acid solution. We
divide the concentration field into two separate regions. Specifically, a relatively small boundary
layer region around the particle is characterised by fast diffusion, and is thus considered quasistatic.
In contrast, diffusion in the far-field is slower, and hence assumed to be time-dependent.
The final system consisting of two nonlinear, coupled ordinary differential equations for the
particle radius and lead concentration, is integrated numerically
The transition between stochastic and deterministic behavior in an excitable gene circuit
We explore the connection between a stochastic simulation model and an
ordinary differential equations (ODEs) model of the dynamics of an excitable
gene circuit that exhibits noise-induced oscillations. Near a bifurcation point
in the ODE model, the stochastic simulation model yields behavior dramatically
different from that predicted by the ODE model. We analyze how that behavior
depends on the gene copy number and find very slow convergence to the large
number limit near the bifurcation point. The implications for understanding the
dynamics of gene circuits and other birth-death dynamical systems with small
numbers of constituents are discussed.Comment: PLoS ONE: Research Article, published 11 Apr 201
Prevention of noncommunicable diseases by interventions in the preconception period: A FIGO position paper for action by healthcare practitioners
With the increase in obesity prevalence among women of reproductive age globally, the risks of type 2 diabetes, gestational diabetes, pre‐eclampsia, and other conditions are rising, with detrimental effects on maternal and newborn health. The period before pregnancy is increasingly recognized as crucial for addressing weight management and reducing malnutrition (both under‐ and overnutrition) in both parents to reduce the risk of noncommunicable diseases (NCDs) in the mother as well as the passage of risk to her offspring. Healthcare practitioners, including obstetricians, gynecologists, midwives, and general practitioners, have an important role to play in supporting women in planning a pregnancy and achieving healthy nutrition and weight before pregnancy. In this position paper, the FIGO Pregnancy Obesity and Nutrition Initiative provides an overview of the evidence for preconception clinical guidelines to reduce the risk of NCDs in mothers and their offspring. It encourages healthcare practitioners to initiate a dialogue on women’s health, nutrition, and weight management before conception. While acknowledging the fundamental importance of the wider social and environmental determinants of health, this paper focuses on a simple set of recommendations for clinical practice that can be used even in short consultations. The recommendations can be contextualized based on local cultural and dietary practices as part of a system‐wide public health approach to influence the wider determinants as well as individual factors influencing preconception health
Gestational diabesity and foetoplacental vascular dysfunction
Gestational diabetes mellitus (GDM) shows a deficiency in the metabolism of D-glucose and other nutrients, thereby negatively affecting the foetoplacental vascular endothelium. Maternal hyperglycaemia and hyperinsulinemia play an important role in the aetiology of GDM. A combination of these and other factors predisposes women to developing GDM with pre-pregnancy normal weight, viz. classic GDM. However, women with GDM and prepregnancy obesity (gestational diabesity, GDty) or overweight (GDMow) show a different metabolic status than women with classic GDM. GDty and GDMow are associated with altered l-arginine/nitric oxide and insulin/adenosine axis signalling in the human foetoplacental microvascular and macrovascular endothelium. These alterations differ from those observed in classic GDM. Here, we have reviewed the consequences of GDty and GDMow in the modulation of foetoplacental endothelial cell function, highlighting studies describing the modulation of intracellular pH homeostasis and the potential implications of NO generation and adenosine signalling in GDty-associated foetal vascular insulin resistance. Moreover, with an increase in the rate of obesity in women of childbearing age worldwide, the prevalence of GDty is expected to increase in the next decades. Therefore, we emphasize that women with GDty and GDMow should be characterized with a different metabolic state from that of women with classic GDM to develop a more specific therapeutic approach for protecting the mother and foetus
Numerical study of inflow equivalence ratio inhomogeneity on oblique detonation formation in hydrogen-air mixtures
In this study, numerical simulations using Euler equations with detailed chemistry are performed to investigate the effect of fuel-air composition inhomogeneity on the oblique detonation wave (ODW) initiation in hydrogen-air mixtures. This study aims for a better understanding of oblique detonation wave engine performance under practical operating conditions, among those is the inhomogeneous mixing of fuel and air giving rise to a variation of the equivalence ratio (ER) in the incoming combustible flow. This work focuses primarily on how a variable equivalence ratio in the inflow mixture affects both the formation and characteristic parameters of the oblique detonation wave. In this regard, the present simulation imposes initially a lateral linear distribution of the mixture equivalence ratio within the initiation region. The variation is either from fuel-lean or fuel-rich to the uniform stoichiometric mixture condition above the oblique shock wave. The obtained numerical results illustrate that the reaction surface is distorted in the cases of low mixture equivalence ratio. The so-called "V-shaped" flame is observed but differed from previous results that it is not coupled with any compression or shock wave. Analyzing the temperature and species density evolution also shows that the fuel-lean and fuel-rich inhomogeneity have different effects on the combustion features in the initiation region behind the oblique shock wave. Two characteristic quantities, namely the initiation length and the ODW surface position, are defined to describe quantitatively the effects of mixture equivalence ratio inhomogeneity. The results show that the initiation length is mainly determined by the mixture equivalence ratio in the initiation region. Additional computations are performed by reversing ER distribution, i.e., with the linear variation above the initiation region of uniform stoichiometric condition and results also demonstrate that the ODW position is effectively determined by the ER variation before the ODW, which has in turn only negligible effect on the initiation length. (C) 2017 Elsevier Masson SAS. All rights reserved.</p
Waist circumference and waist-to-height ratio of Hong Kong Chinese children
<p>Abstract</p> <p>Background</p> <p>Central body fat is a better predictor than overall body fat for cardiovascular (CV) risk factors in both adults and children. Waist circumference (WC) has been used as a proxy measure of central body fat. Children at high CV risk may be identified by WC measurements. Waist-to-height ratio (WHTR) has been proposed as an alternative, conveniently age-independent measure of CV risk although WHTR percentiles have not been reported. We aim to provide age- and sex-specific reference values for WC and WHTR in Hong Kong Chinese children.</p> <p>Methods</p> <p>Cross sectional study in a large representative sample of 14,842 children aged 6 to 18 years in 2005/6. Sex-specific descriptive statistics for whole-year age groups and smoothed percentile curves of WC and WHTR were derived and presented.</p> <p>Results</p> <p>WC increased with age, although less after age 14 years in girls. WHTR decreased with age (particularly up to age 14). WHTR correlated less closely than WC with BMI (r = 0.65, 0.59 cf. 0.93, 0.91, for boys and girls respectively).</p> <p>Conclusion</p> <p>Reference values and percentile curves for WC and WHRT of Chinese children and adolescents are provided. Both WC and WHTR are age dependent. Since the use of WHRT does not obviate the need for age-related reference standards, simple WC measurement is a more convenient method for central fat estimation than WHRT.</p
Two stage fracture of a polyethylene post in a 9-year-old posterior-stabilized knee prosthesis: a case report
<p>Abstract</p> <p>Introduction</p> <p>Several cases of tibial post breakage are reported in the literature. To the best of our knowledge, only three cases of NexGen knee prosthesis (Zimmer, Warsaw, Indiana, USA) tibial post failure have been reported.</p> <p>Case presentation</p> <p>In November 1999, a 63-year-old Caucasian woman from Italy with a history of symptomatic left knee osteoarthritis underwent a total knee arthroplasty. In March 2008, while rising from a chair, she felt a sudden pain and instability in her left knee. She reported a fracture of the polyethylene post of the tibial insert. No malposition or malalignment of either the femoral or tibial components were identified. The polyethylene tibial insert was studied under light microscopy and scanning electron microscopy. The fracture was also noted to have occurred without any notable polyethylene wear.</p> <p>Conclusion</p> <p>Scanning electron microscopy revealed two different damage patterns that could be explained with a two-stage rupture of our patient's polyethylene post. This could have been caused by a non-optimal ligamentous balancing during first implant surgery. Her knee probably developed a varus instability that weakened the post, and then a posterior anterior stress finally broke the polyethylene.</p
Deceleration of Fusion–Fission Cycles Improves Mitochondrial Quality Control during Aging
Mitochondrial dynamics and mitophagy play a key role in ensuring mitochondrial quality control. Impairment thereof was proposed to be causative to neurodegenerative diseases, diabetes, and cancer. Accumulation of mitochondrial dysfunction was further linked to aging. Here we applied a probabilistic modeling approach integrating our current knowledge on mitochondrial biology allowing us to simulate mitochondrial function and quality control during aging in silico. We demonstrate that cycles of fusion and fission and mitophagy indeed are essential for ensuring a high average quality of mitochondria, even under conditions in which random molecular damage is present. Prompted by earlier observations that mitochondrial fission itself can cause a partial drop in mitochondrial membrane potential, we tested the consequences of mitochondrial dynamics being harmful on its own. Next to directly impairing mitochondrial function, pre-existing molecular damage may be propagated and enhanced across the mitochondrial population by content mixing. In this situation, such an infection-like phenomenon impairs mitochondrial quality control progressively. However, when imposing an age-dependent deceleration of cycles of fusion and fission, we observe a delay in the loss of average quality of mitochondria. This provides a rational why fusion and fission rates are reduced during aging and why loss of a mitochondrial fission factor can extend life span in fungi. We propose the ‘mitochondrial infectious damage adaptation’ (MIDA) model according to which a deceleration of fusion–fission cycles reflects a systemic adaptation increasing life span
Cleavage of the SARS Coronavirus Spike Glycoprotein by Airway Proteases Enhances Virus Entry into Human Bronchial Epithelial Cells In Vitro
Background: Entry of enveloped viruses into host cells requires the activation of viral envelope glycoproteins through cleavage by either intracellular or extracellular proteases. In order to gain insight into the molecular basis of protease cleavage and its impact on the efficiency of viral entry, we investigated the susceptibility of a recombinant native full-length S-protein trimer (triSpike) of the severe acute respiratory syndrome coronavirus (SARS-CoV) to cleavage by various airway proteases. Methodology/Principal Findings: Purified triSpike proteins were readily cleaved in vitro by three different airway proteases: trypsin, plasmin and TMPRSS11a. High Performance Liquid Chromatography (HPLC) and amino acid sequencing analyses identified two arginine residues (R667 and R797) as potential protease cleavage site(s). The effect of protease-dependent enhancement of SARS-CoV infection was demonstrated with ACE2 expressing human bronchial epithelial cells 16HBE. Airway proteases regulate the infectivity of SARS-CoV in a fashion dependent on previous receptor binding. The role of arginine residues was further shown with mutant constructs (R667A, R797A or R797AR667A). Mutation of R667 or R797 did not affect the expression of S-protein but resulted in a differential efficacy of pseudotyping into SARS-CoVpp. The R667A SARS-CoVpp mutant exhibited a lack of virus entry enhancement following protease treatment. Conclusions/Significance: These results suggest that SARS S-protein is susceptible to airway protease cleavage and, furthermore, that protease mediated enhancement of virus entry depends on specific conformation of SARS S-protein upon ACE2 binding. These data have direct implications for the cell entry mechanism of SARS-CoV along the respiratory system and, furthermore expand the possibility of identifying potential therapeutic agents against SARS-CoV. © 2009 Kam et al.published_or_final_versio
- …