41 research outputs found

    Phase I study of the combination of losoxantrone and cyclophosphamide in patients with refractory solid tumours

    Get PDF
    Losoxantrone is a DNA intercalator that was developed with the potential to replace anthracyclines. The recommended single agent dose of losoxantrone is 50 mg m−2 every 3 weeks. We conducted a phase I study of losoxantrone and a fixed dose of cyclophosphamide on a q3 weekly schedule. Forty-nine patients were enrolled, of which 46 were evaluable for toxicity. The dose-limiting toxicity was neutropenia at the maximum tolerable losoxantrone dose of 45 mg m−2. With granulocyte colony-stimulating factor support, significant further dose escalation of losoxantrone was achieved. Cardiotoxicity was seen with cumulative dosing. Pharmacokinetics of losoxantrone revealed linear kinetics and triphasic clearance, with significant interpatient variability. No objective responses were seen in this study. Neutropenia was dose-limiting in this combination with or without granulocyte colony-stimulating factor support. The recommended dose for further testing is cyclophosphamide 500 mg m−2 followed by losoxantrone 95 mg m−2 with granulocyte colony-stimulating factor support

    Endocrine therapy for breast cancer: a model of hormonal manipulation

    Get PDF
    Oestrogen receptor (ER) is the driving transcription factor in 70% of breast cancer. Endocrine therapies targeting the ER represent one of the most successful anticancer strategies to date. In the clinic, novel targeted agents are now being exploited in combination with established endocrine therapies to maximise efficacy. However, clinicians must balance this gain against the risk to patients of increased side effects with combination therapies. This article provides a succinct outline of the principles of hormonal manipulation in breast cancer, alongside the key evidence that underpins current clinical practice. As the role of endocrine therapy in breast cancer continues to expand, the challenge is to interpret the data and select the optimal strategy for a given clinical scenario

    Inducing Ni Sensitivity in the Ni Hyperaccumulator Plant Alyssum inflatum Nyárády (Brassicaceae) by Transforming with CAX1, a Vacuolar Membrane Calcium Transporter

    Get PDF
    The importance of calcium in nickel tolerance was studied in the nickel hyperaccumulator plant Alyssum inflatum by gene transformation of CAX1, a vacuolar membrane transporter that reduces cytosolic calcium. CAX1 from Arabidopsis thaliana with a CaMV35S promoter accompanying a kanamycin resistance gene was transferred into A. inflatum using Agrobacterium tumefaciens. Transformed calli were subcultured three times on kanamycin-rich media and transformation was confirmed by PCR using a specific primer for CAX1. At least 10 callus lines were used as a pool of transformed material. Both transformed and untransformed calli were treated with varying concentrations of either calcium (1–15 mM) or nickel (0– 500 lM) to compare their responses to those ions. Increased external calcium generally led to increased callus biomass, however, the increase was greater for untransformed callus. Further, increased external calcium led to increased callus calcium concentrations. Transformed callus was less nickel tolerant than untransformed callus: under increasing nickel concentrations callus relative growth rate was significantly less for transformed callus. Transformed callus also contained significantly less nickel than untransformed callus when exposed to the highest external nickel concentration (200 lM). We suggest that transformation with CAX1 decreased cytosolic calcium and resulted in decreased nickel tolerance. This in turn suggests that, at low cytosolic calcium concentrations, other nickel tolerance mechanisms (e.g., complexation and vacuolar sequestration) are insufficient for nickel tolerance. We propose that high cytosolic calcium is an important mechanism that results in nickel tolerance by nickel hyperaccumulator plants

    The wood anatomy of New Guinea Nothofagus B1

    No full text

    The anatomy of the timbers of the south-west Pacific area. V. Flacourtiaceae

    No full text

    The anatomy of the timbers of the south-west Pacific area. III. Myrtaceae

    No full text

    Vessel wall structure: an investigation using scanning electron microscopy

    No full text
    corecore