42 research outputs found

    Pattern-Sensitive Epilepsy. I: A Demonstration of a Spatial Frequency Selective Epileptic Response to Gratings

    Full text link
    Rare individuals suffer epileptic seizures when they view certain images, particularly stripes. Contrast-threshold functions (the ability to see faint stripes of various widths) were determined for two pattern-sensitive brothers, and the epileptogenicity of various patterns was assessed for one of them. Sine wave grating contrast-detection thresholds for the two subjects were essentially normal, with lowest thresholds at approximately 2 cycles/ degree (c/deg). Epileptiform discharges occurred maximally at 5 c/deg with a 1-octave 50% bandwidth. Pattern epileptogenicity was increased by the addition of a third harmonic sine wave grating to its fundamental, but was unaffected by the phase relation of the two gratings. The frequency selectivity of epileptic responsiveness was quantitatively similar to a “spatial frequency channel.” Inhibitory interactions were not present. The findings suggest relations between the phenomena of pattern-sensitive epilepsy and hypothesized spatial frequency channels which merit further exploration. RESUMEN De manera excepcional, hay personas que pueden tener ataques epilÉpticos cuando ven ciertas imÁgenes, particularmente rayas. Se determinaron los umbrales para contrastes (la capacidad de ver rayas de diversas anchuras y muy tenues) en dos hermanos sensibles a patrones y se estableciÓ la epileptogeneidad de di versos patrones en uno de ellos. Los umbrales para contrastes fueron esencialmente normales en los dos sujetos cuando se utilizeÓ una rejilla hecha con ondas sinusoidales, siendo el umbral inferior unos 2 ciclos/ grado (c/deg). Descargas epileptiformes tuvieron lugar de modo mÁximo a 5 c/deg con una amplitud de banda del 50% de una octava. la capacidad epileptogÉnica del partÓn aumentÓ cuando se aÑadiÓ una tercera sinusoide armÓnica a la rejilla base pero esa capacidad no se viÓ alterada por la relaciÓn de fase entre las dos rejillas. La selectividad de la frecuencia de la respuesta epileptogÉnica fue cuantitativamente similar al “canal de frecuencia espacial”. No se observaron interacciones inhibitorias. Los hallazgos sugieren que hay relaciones entre la epilepsyÍa secundaria a patrones visuales y los hipotÉticos canales de frecuencia espacial, lo cual merece mÁs investigaciÓn.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65270/1/j.1528-1157.1980.tb04075.x.pd

    Comparing Aerodynamic Efficiency in Birds and Bats Suggests Better Flight Performance in Birds

    Get PDF
    Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate longer distances than bats

    A redox switch in angiotensinogen modulates angiotensin release.

    Get PDF
    Blood pressure is critically controlled by angiotensins, which are vasopressor peptides specifically released by the enzyme renin from the tail of angiotensinogen-a non-inhibitory member of the serpin family of protease inhibitors. Although angiotensinogen has long been regarded as a passive substrate, the crystal structures solved here to 2.1 Å resolution show that the angiotensin cleavage site is inaccessibly buried in its amino-terminal tail. The conformational rearrangement that makes this site accessible for proteolysis is revealed in our 4.4 Å structure of the complex of human angiotensinogen with renin. The co-ordinated changes involved are seen to be critically linked by a conserved but labile disulphide bridge. Here we show that the reduced unbridged form of angiotensinogen is present in the circulation in a near 40:60 ratio with the oxidized sulphydryl-bridged form, which preferentially interacts with receptor-bound renin. We propose that this redox-responsive transition of angiotensinogen to a form that will more effectively release angiotensin at a cellular level contributes to the modulation of blood pressure. Specifically, we demonstrate the oxidative switch of angiotensinogen to its more active sulphydryl-bridged form in the maternal circulation in pre-eclampsia-the hypertensive crisis of pregnancy that threatens the health and survival of both mother and child

    Combining Feature Selection and Integration—A Neural Model for MT Motion Selectivity

    Get PDF
    Background: The computation of pattern motion in visual area MT based on motion input from area V1 has been investigated in many experiments and models attempting to replicate the main mechanisms. Two different core conceptual approaches were developed to explain the findings. In integrationist models the key mechanism to achieve pattern selectivity is the nonlinear integration of V1 motion activity. In contrast, selectionist models focus on the motion computation at positions with 2D features. Methodology/Principal Findings: Recent experiments revealed that neither of the two concepts alone is sufficient to explain all experimental data and that most of the existing models cannot account for the complex behaviour found. MT pattern selectivity changes over time for stimuli like type II plaids from vector average to the direction computed with an intersection of constraint rule or by feature tracking. Also, the spatial arrangement of the stimulus within the receptive field of a MT cell plays a crucial role. We propose a recurrent neural model showing how feature integration and selection can be combined into one common architecture to explain these findings. The key features of the model are the computation of 1D and 2D motion in model area V1 subpopulations that are integrated in model MT cells using feedforward and feedback processing. Our results are also in line with findings concerning the solution of the aperture problem. Conclusions/Significance: We propose a new neural model for MT pattern computation and motion disambiguation that i

    Synchronous chaos and broad band gamma rhythm in a minimal multi-layer model of primary visual cortex

    Get PDF
    Visually induced neuronal activity in V1 displays a marked gamma-band component which is modulated by stimulus properties. It has been argued that synchronized oscillations contribute to these gamma-band activity [... however,] even when oscillations are observed, they undergo temporal decorrelation over very few cycles. This is not easily accounted for in previous network modeling of gamma oscillations. We argue here that interactions between cortical layers can be responsible for this fast decorrelation. We study a model of a V1 hypercolumn, embedding a simplified description of the multi-layered structure of the cortex. When the stimulus contrast is low, the induced activity is only weakly synchronous and the network resonates transiently without developing collective oscillations. When the contrast is high, on the other hand, the induced activity undergoes synchronous oscillations with an irregular spatiotemporal structure expressing a synchronous chaotic state. As a consequence the population activity undergoes fast temporal decorrelation, with concomitant rapid damping of the oscillations in LFPs autocorrelograms and peak broadening in LFPs power spectra. [...] Finally, we argue that the mechanism underlying the emergence of synchronous chaos in our model is in fact very general. It stems from the fact that gamma oscillations induced by local delayed inhibition tend to develop chaos when coupled by sufficiently strong excitation.Comment: 49 pages, 11 figures, 7 table

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore