462 research outputs found

    X-ray Emission from Extragalactic Jets

    Get PDF
    This review focuses on the X-ray emission processes of extra-galactic jets on scales resolvable by the sub arcsec resolution of the Chandra X-ray Observatory. It is divided into 4 parts. The introductory chapter reviews the classical problems for jets, as well as those associated directly with the X-ray emission. Throughout this section, we deal with the dualisms of low powered radio sources versus high powered radio galaxies and quasars; synchrotron models versus inverse Compton models; and the distinction between the relativistic plasma responsible for the received radiation and the medium responsible for the transport of energy down the jet. The second part collects the observational and inferred parameters for the currently detected X-ray jets and attempts to put their relative sizes and luminosities in perspective. In part 3, we first give the relevant radio and optical jet characteristics, and then examine the details of the X-ray data and how they can be related to various jet attributes. The last section is devoted to a critique of the two non-thermal emission processes and to prospects for progress in our understanding of jets.Comment: This is a version of a review article to be published (2006 Sep) in the Annual Reviews of Astronomy and Astrophysics, vol. 44, p. 463. 8 of the 12 figures have been removed from the article and are provided as separate jpg files to conserve space. There are 38 pages remaining in the text. Complete postscript and pdf versions are available at: http://hea-www.harvard.edu/~harris/Xjetreview

    Quantifying Bar Strength: Morphology Meets Methodology

    Full text link
    A set of objective bar-classification methods have been applied to the Ohio State Bright Spiral Galaxy Survey (Eskridge et al. 2002). Bivariate comparisons between methods show that all methods agree in a statistical sense. Thus the distribution of bar strengths in a sample of galaxies can be robustly determined. There are very substantial outliers in all bivariate comparisons. Examination of the outliers reveals that the scatter in the bivariate comparisons correlates with galaxy morphology. Thus multiple measures of bar strength provide a means of studying the range of physical properties of galaxy bars in an objective statistical sense.Comment: LaTeX with Kluwer style file, 5 pages with 3 embedded figures. edited by Block, D.L., Freeman, K.C., Puerari, I., & Groess,

    Sources of Relativistic Jets in the Galaxy

    Full text link
    Black holes of stellar mass and neutron stars in binary systems are first detected as hard X-ray sources using high-energy space telescopes. Relativistic jets in some of these compact sources are found by means of multiwavelength observations with ground-based telescopes. The X-ray emission probes the inner accretion disk and immediate surroundings of the compact object, whereas the synchrotron emission from the jets is observed in the radio and infrared bands, and in the future could be detected at even shorter wavelengths. Black-hole X-ray binaries with relativistic jets mimic, on a much smaller scale, many of the phenomena seen in quasars and are thus called microquasars. Because of their proximity, their study opens the way for a better understanding of the relativistic jets seen elsewhere in the Universe. From the observation of two-sided moving jets it is inferred that the ejecta in microquasars move with relativistic speeds similar to those believed to be present in quasars. The simultaneous multiwavelength approach to microquasars reveals in short timescales the close connection between instabilities in the accretion disk seen in the X-rays, and the ejection of relativistic clouds of plasma observed as synchrotron emission at longer wavelengths. Besides contributing to a deeper comprehension of accretion disks and jets, microquasars may serve in the future to determine the distances of jet sources using constraints from special relativity, and the spin of black holes using general relativity.Comment: 39 pages, Tex, 8 figures, to appear in vol. 37 (1999) of Annual Reviews of Astronomy and Astrophysic

    Arm-in-cage testing of natural human-derived mosquito repellents

    Get PDF
    BACKGROUND: Individual human subjects are differentially attractive to mosquitoes and other biting insects. Previous investigations have demonstrated that this can be attributed partly to enhanced production of natural repellent chemicals by those individuals that attract few mosquitoes in the laboratory. The most important compounds in this respect include three aldehydes, octanal, nonanal and decanal, and two ketones, 6-methyl-5-hepten-2-one and geranylacetone [(E)-6,10-dimethylundeca-5,9-dien-2-one]. In olfactometer trials, these compounds interfered with attraction of mosquitoes to a host and consequently show promise as novel mosquito repellents. METHODS: To test whether these chemicals could provide protection against mosquitoes, laboratory repellency trials were carried out to test the chemicals individually at different concentrations and in different mixtures and ratios with three major disease vectors: Anopheles gambiae, Culex quinquefasciatus and Aedes aegypti. RESULTS: Up to 100% repellency was achieved depending on the type of repellent compound tested, the concentration and the relative composition of the mixture. The greatest effect was observed by mixing together two compounds, 6-methyl-5-hepten-2-one and geranylacetone in a 1:1 ratio. This mixture exceeded the repellency of DEET when presented at low concentrations. The repellent effect of this mixture was maintained over several hours. Altering the ratio of these compounds significantly affected the behavioural response of the mosquitoes, providing evidence for the ability of mosquitoes to detect and respond to specific mixtures and ratios of natural repellent compounds that are associated with host location. CONCLUSION: The optimum mixture of 6-methyl-5-hepten-2-one and geranylacetone was a 1:1 ratio and this provided the most effective protection against all species of mosquito tested. With further improvements in formulation, selected blends of these compounds have the potential to be exploited and developed as human-derived novel repellents for personal protection

    Accuracy of direct genomic values in Holstein bulls and cows using subsets of SNP markers

    Get PDF
    Background: At the current price, the use of high-density single nucleotide polymorphisms (SNP) genotyping assays in genomic selection of dairy cattle is limited to applications involving elite sires and dams. The objective of this study was to evaluate the use of low-density assays to predict direct genomic value (DGV) on five milk production traits, an overall conformation trait, a survival index, and two profit index traits (APR, ASI). Methods. Dense SNP genotypes were available for 42,576 SNP for 2,114 Holstein bulls and 510 cows. A subset of 1,847 bulls born between 1955 and 2004 was used as a training set to fit models with various sets of pre-selected SNP. A group of 297 bulls born between 2001 and 2004 and all cows born between 1992 and 2004 were used to evaluate the accuracy of DGV prediction. Ridge regression (RR) and partial least squares regression (PLSR) were used to derive prediction equations and to rank SNP based on the absolute value of the regression coefficients. Four alternative strategies were applied to select subset of SNP, namely: subsets of the highest ranked SNP for each individual trait, or a single subset of evenly spaced SNP, where SNP were selected based on their rank for ASI, APR or minor allele frequency within intervals of approximately equal length. Results: RR and PLSR performed very similarly to predict DGV, with PLSR performing better for low-density assays and RR for higher-density SNP sets. When using all SNP, DGV predictions for production traits, which have a higher heritability, were more accurate (0.52-0.64) than for survival (0.19-0.20), which has a low heritability. The gain in accuracy using subsets that included the highest ranked SNP for each trait was marginal (5-6%) over a common set of evenly spaced SNP when at least 3,000 SNP were used. Subsets containing 3,000 SNP provided more than 90% of the accuracy that could be achieved with a high-density assay for cows, and 80% of the high-density assay for young bulls. Conclusions: Accurate genomic evaluation of the broader bull and cow population can be achieved with a single genotyping assays containing ∼ 3,000 to 5,000 evenly spaced SNP

    Identification of Class I HLA T Cell Control Epitopes for West Nile Virus

    Get PDF
    The recent West Nile virus (WNV) outbreak in the United States underscores the importance of understanding human immune responses to this pathogen. Via the presentation of viral peptide ligands at the cell surface, class I HLA mediate the T cell recognition and killing of WNV infected cells. At this time, there are two key unknowns in regards to understanding protective T cell immunity: 1) the number of viral ligands presented by the HLA of infected cells, and 2) the distribution of T cell responses to these available HLA/viral complexes. Here, comparative mass spectroscopy was applied to determine the number of WNV peptides presented by the HLA-A*11:01 of infected cells after which T cell responses to these HLA/WNV complexes were assessed. Six viral peptides derived from capsid, NS3, NS4b, and NS5 were presented. When T cells from infected individuals were tested for reactivity to these six viral ligands, polyfunctional T cells were focused on the GTL9 WNV capsid peptide, ligands from NS3, NS4b, and NS5 were less immunogenic, and two ligands were largely inert, demonstrating that class I HLA reduce the WNV polyprotein to a handful of immune targets and that polyfunctional T cells recognize infections by zeroing in on particular HLA/WNV epitopes. Such dominant HLA/peptide epitopes are poised to drive the development of WNV vaccines that elicit protective T cells as well as providing key antigens for immunoassays that establish correlates of viral immunity. © 2013 Kaabinejadian et al

    Completeness and timeliness of tuberculosis notification in Taiwan

    Get PDF
    Tuberculosis (TB) is a notifiable disease by the Communicable Disease Control Law in Taiwan. Several measures have been undertaken to improve reporting of TB but the completeness and timeliness of TB notification in Taiwan has not yet been systemically evaluated

    The Hubble Constant

    Get PDF
    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H0H_0 values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68km/s/Mpc and typical errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200
    corecore