15 research outputs found

    Primitive Roots and a Test for Primality

    No full text

    Nonlinear Metamaterials

    No full text
    Metamaterials are engineered structures designed to exhibit exotic electromagnetic properties. Early on in the development of metamaterials, these properties were extended to exotic regimes of nonlinear behaviour, unknown in classical nonlinear optics. In this chapter, we give a historical overview of metamaterials, considering first their exotic linear properties, and show how these give rise to exotic nonlinear properties, at frequency ranges from RF to visible. We overview the main attractive features of metamaterials for nonlinear applications, namely their strong local field enhancement, their ability to achieve exotic phase matching conditions, and the possibility to create inclusions with the correct symmetry to enhance a chosen nonlinear process. We then summarise the two most important classes of nonlinear optical metamaterials, plasmonic and all-dielectric

    A compositional tipping point governing the mobilization and eruption style of rhyolitic magma

    No full text
    International audienceThe most viscous volcanic melts and the largest explosive eruptions on our planet consist of calcalkaline rhyolites. These eruptions have the potential to influence global climate. The eruptive products are commonly very crystal-poor and highly degassed, yet the magma is mostly stored as crystal mushes containing small amounts of interstitial melt with elevated water content. It is unclear how magma mushes are mobilized to create large batches of eruptible crystal-free magma. Further, rhyolitic eruptions can switch repeatedly between effusive and explosive eruption styles and this transition is difficult to attribute to the rheological effects of water content or crystallinity. Here we measure the viscosity of a series of melts spanning the compositional range of the Yellowstone volcanic system and find that in a narrow compositional zone, melt viscosity increases by up to two orders of magnitude. These viscosity variations are not predicted by current viscosity models and result from melt structure reorganization, as confirmed by Raman spectroscopy. We identify a critical compositional tipping point, independently documented in the global geochemical record of rhyolites, at which rhyolitic melts fluidize or stiffen and that clearly separates effusive from explosive deposits worldwide. This correlation between melt structure, viscosity and eruptive behaviour holds despite the variable water content and other parameters, such as temperature, that are inherent in natural eruptions. Thermodynamic modelling demonstrates how the observed subtle compositional changes that result in fluidization or stiffening of the melt can be induced by crystal growth from the melt or variation in oxygen fugacity. However, the rheological effects of water and crystal content alone cannot explain the correlation between composition and eruptive style. We conclude that the composition of calcalkaline rhyolites is decisive in determining the mobilization and eruption dynamics of Earth’s largest volcanic systems, resulting in a better understanding of how the melt structure controls volcanic processes

    Trees, thickets, or something in between? Recent theoretical and empirical work in cultural phylogeny

    No full text

    LD Score regression distinguishes confounding from polygenicity in genome-wide association studies

    No full text
    Both polygenicity (many small genetic effects) and confounding biases, such as cryptic relatedness and population stratification, can yield an inflated distribution of test statistics in genome-wide association studies (GWAS). However, current methods cannot distinguish between inflation from a true polygenic signal and bias. We have developed an approach, LD Score regression, that quantifies the contribution of each by examining the relationship between test statistics and linkage disequilibrium (LD). The LD Score regression intercept can be used to estimate a more powerful and accurate correction factor than genomic control. We find strong evidence that polygenicity accounts for the majority of the inflation in test statistics in many GWAS of large sample size
    corecore