205 research outputs found

    Strategies to diagnose ovarian cancer: new evidence from phase 3 of the multicentre international IOTA study

    Get PDF
    Background: To compare different ultrasound-based international ovarian tumour analysis (IOTA) strategies and risk of malignancy index (RMI) for ovarian cancer diagnosis using a meta-analysis approach of centre-specific data from IOTA3. Methods: This prospective multicentre diagnostic accuracy study included 2403 patients with 1423 benign and 980 malignant adnexal masses from 2009 until 2012. All patients underwent standardised transvaginal ultrasonography. Test performance of RMI, subjective assessment (SA) of ultrasound findings, two IOTA risk models (LR1 and LR2), and strategies involving combinations of IOTA simple rules (SRs), simple descriptors (SDs) and LR2 with and without SA was estimated using a meta-analysis approach. Reference standard was histology after surgery. Results: The areas under the receiver operator characteristic curves of LR1, LR2, SA and RMI were 0.930 (0.917–0.942), 0.918 (0.905–0.930), 0.914 (0.886–0.936) and 0.875 (0.853–0.894). Diagnostic one-step and two-step strategies using LR1, LR2, SR and SD achieved summary estimates for sensitivity 90–96%, specificity 74–79% and diagnostic odds ratio (DOR) 32.8–50.5. Adding SA when IOTA methods yielded equivocal results improved performance (DOR 57.6–75.7). Risk of Malignancy Index had sensitivity 67%, specificity 91% and DOR 17.5. Conclusions: This study shows all IOTA strategies had excellent diagnostic performance in comparison with RMI. The IOTA strategy chosen may be determined by clinical preference

    Meta-analysis of four new genome scans for lipid parameters and analysis of positional candidates in positive linkage regions

    Get PDF
    Lipid levels in plasma strongly influence the risk for coronary heart disease. To localise and subsequently identify genes affecting lipid levels, we performed four genome-wide linkage scans followed by combined linkage/association analysis. Genome-scans were performed in 701 dizygotic twin pairs from four samples with data on plasma levels of HDL- and LDL-cholesterol and their major protein constituents, apolipoprotein AI (ApoAI) and Apolipoprotein B (ApoB). To maximise power, the genome scans were analysed simultaneously using a well-established meta-analysis method that was newly applied to linkage analysis. Overall LOD scores were estimated using the means of the sample-specific quantitative trait locus (QTL) effects inversely weighted by the standard errors obtained using an inverse regression method. Possible heterogeneity was accounted for with a random effects model. Suggestive linkage for HDL-C was observed on 8p23.1 and 12q21.2 and for ApoAI on 1q21.3. For LDL-C and ApoB, linkage regions frequently coincided (2p24.1, 2q32.1, 19p13.2 and 19q13.31). Six of the putative QTLs replicated previous findings. After fine mapping, three maximum LOD scores mapped within 1cM of major candidate genes, namely APOB (LOD =2.1), LDLR (LOD =1.9) and APOE (LOD =1.7). APOB haplotypes explained 27% of the QTL effect observed for LDL-C on 2p24.1 and reduced the LOD-score by 0.82. Accounting for the effect of the LDLR and APOE haplotypes did not change the LOD score close to the LDLR gene but abolished the linkage signal at the APOE gene. In conclusion, application of a new meta-analysis approach maximised the power to detect QTLs for lipid levels and improved the precision of their location estimate. © 2005 Nature Publishing Group. All rights reserved

    Dynamic predicting by landmarking as an alternative for multi-state modeling: an application to acute lymphoid leukemia data

    Get PDF
    This paper considers the problem of obtaining a dynamic prediction for 5-year failure free survival after bone marrow transplantation in ALL patients using data from the EBMT, the European Group for Blood and Marrow Transplantation. The paper compares the new landmark methodology as developed by the first author and the established multi-state modeling as described in a recent Tutorial in Biostatistics in Statistics in Medicine by the second author and colleagues. As expected the two approaches give similar results. The landmark methodology does not need complex modeling and leads to easy prediction rules. On the other hand, it does not give the insight in the biological processes as obtained for the multi-state model

    Meta-analysis of binary outcomes via generalized linear mixed models: a simulation study

    Get PDF
    Background: Systematic reviews and meta-analyses of binary outcomes are widespread in all areas of application. The odds ratio, in particular, is by far the most popular effect measure. However, the standard meta-analysis of odds ratios using a random-effects model has a number of potential problems. An attractive alternative approach for the meta-analysis of binary outcomes uses a class of generalized linear mixed models (GLMMs). GLMMs are believed to overcome the problems of the standard random-effects model because they use a correct binomial-normal likelihood. However, this belief is based on theoretical considerations, and no sufficient simulations have assessed the performance of GLMMs in meta-analysis. This gap may be due to the computational complexity of these models and the resulting considerable time requirements. Methods: The present study is the first to provide extensive simulations on the performance of four GLMM methods (models with fixed and random study effects and two conditional methods) for meta-analysis of odds ratios in comparison to the standard random effects model. Results: In our simulations, the hypergeometric-normal model provided less biased estimation of the heterogeneity variance than the standard random-effects meta-analysis using the restricted maximum likelihood (REML) estimation when the data were sparse, but the REML method performed similarly for the point estimation of the odds ratio, and better for the interval estimation. Conclusions: It is difficult to recommend the use of GLMMs in the practice of meta-analysis. The problem of finding uniformly good methods of the meta-analysis for binary outcomes is still open

    Multivariate random effects meta-analysis of diagnostic tests with multiple thresholds

    Get PDF
    Background. Bivariate random effects meta-analysis of diagnostic tests is becoming a well established approach when studies present one two-by-two table or one pair of sensitivity and specificity. When studies present multiple thresholds for test positivity, usually meta-analysts reduce the data to a two-by-two table or take one threshold value at a time and apply the well developed meta-analytic approaches. However, this approach does not fully exploi

    The value of predicting restriction of fetal growth and compromise of its wellbeing: Systematic quantitative overviews (meta-analysis) of test accuracy literature

    Get PDF
    BACKGROUND: Restriction of fetal growth and compromise of fetal wellbeing remain significant causes of perinatal death and childhood disability. At present, there is a lack of scientific consensus about the best strategies for predicting these conditions before birth. Therefore, there is uncertainty about the best management of pregnant women who might have a growth restricted baby. This is likely to be due to a dearth of clear collated information from individual research studies drawn from different sources on this subject. METHODS/DESIGN: A series of systematic reviews and meta-analyses will be undertaken to determine, among pregnant women, the accuracy of various tests to predict and/or diagnose fetal growth restriction and compromise of fetal wellbeing. We will search Medline, Embase, Cochrane Library, MEDION, citation lists of review articles and eligible primary articles and will contact experts in the field. Independent reviewers will select studies, extract data and assess study quality according to established criteria. Language restrictions will not be applied. Data synthesis will involve meta-analysis (where appropriate), exploration of heterogeneity and publication bias. DISCUSSION: The project will collate and synthesise the available evidence regarding the value of the tests for predicting restriction of fetal growth and compromise of fetal wellbeing. The systematic overviews will assess the quality of the available evidence, estimate the magnitude of potential benefits, identify those tests with good predictive value and help formulate practice recommendations

    Meta-Analyst: software for meta-analysis of binary, continuous and diagnostic data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meta-analysis is increasingly used as a key source of evidence synthesis to inform clinical practice. The theory and statistical foundations of meta-analysis continually evolve, providing solutions to many new and challenging problems. In practice, most meta-analyses are performed in general statistical packages or dedicated meta-analysis programs.</p> <p>Results</p> <p>Herein, we introduce Meta-Analyst, a novel, powerful, intuitive, and free meta-analysis program for the meta-analysis of a variety of problems. Meta-Analyst is implemented in C# atop of the Microsoft .NET framework, and features a graphical user interface. The software performs several meta-analysis and meta-regression models for binary and continuous outcomes, as well as analyses for diagnostic and prognostic test studies in the frequentist and Bayesian frameworks. Moreover, Meta-Analyst includes a flexible tool to edit and customize generated meta-analysis graphs (e.g., forest plots) and provides output in many formats (images, Adobe PDF, Microsoft Word-ready RTF). The software architecture employed allows for rapid changes to be made to either the Graphical User Interface (GUI) or to the analytic modules.</p> <p>We verified the numerical precision of Meta-Analyst by comparing its output with that from standard meta-analysis routines in Stata over a large database of 11,803 meta-analyses of binary outcome data, and 6,881 meta-analyses of continuous outcome data from the Cochrane Library of Systematic Reviews. Results from analyses of diagnostic and prognostic test studies have been verified in a limited number of meta-analyses versus MetaDisc and MetaTest. Bayesian statistical analyses use the OpenBUGS calculation engine (and are thus as accurate as the standalone OpenBUGS software).</p> <p>Conclusion</p> <p>We have developed and validated a new program for conducting meta-analyses that combines the advantages of existing software for this task.</p

    Prediction of pre-eclampsia: a protocol for systematic reviews of test accuracy

    Get PDF
    BACKGROUND: Pre-eclampsia, a syndrome of hypertension and proteinuria, is a major cause of maternal and perinatal morbidity and mortality. Accurate prediction of pre-eclampsia is important, since high risk women could benefit from intensive monitoring and preventive treatment. However, decision making is currently hampered due to lack of precise and up to date comprehensive evidence summaries on estimates of risk of developing pre-eclampsia. METHODS/DESIGN: A series of systematic reviews and meta-analyses will be undertaken to determine, among women in early pregnancy, the accuracy of various tests (history, examinations and investigations) for predicting pre-eclampsia. We will search Medline, Embase, Cochrane Library, MEDION, citation lists of review articles and eligible primary articles and will contact experts in the field. Reviewers working independently will select studies, extract data, and assess study validity according to established criteria. Language restrictions will not be applied. Bivariate meta-analysis of sensitivity and specificity will be considered for tests whose studies allow generation of 2 × 2 tables. DISCUSSION: The results of the test accuracy reviews will be integrated with results of effectiveness reviews of preventive interventions to assess the impact of test-intervention combinations for prevention of pre-eclampsia
    corecore