9 research outputs found

    Biosignals reflect pair-dynamics in collaborative work : EDA and ECG study of pair-programming in a classroom environment

    Get PDF
    Collaboration is a complex phenomenon, where intersubjective dynamics can greatly affect the productive outcome. Evaluation of collaboration is thus of great interest, and can potentially help achieve better outcomes and performance. However, quantitative measurement of collaboration is difficult, because much of the interaction occurs in the intersubjective space between collaborators. Manual observation and/or self-reports are subjective, laborious, and have a poor temporal resolution. The problem is compounded in natural settings where task-activity and response-compliance cannot be controlled. Physiological signals provide an objective mean to quantify intersubjective rapport (as synchrony), but require novel methods to support broad deployment outside the lab. We studied 28 student dyads during a self-directed classroom pair-programming exercise. Sympathetic and parasympathetic nervous system activation was measured during task performance using electrodermal activity and electrocardiography. Results suggest that (a) we can isolate cognitive processes (mental workload) from confounding environmental effects, and (b) electrodermal signals show role-specific but correlated affective response profiles. We demonstrate the potential for social physiological compliance to quantify pair-work in natural settings, with no experimental manipulation of participants required. Our objective approach has a high temporal resolution, is scalable, non-intrusive, and robust.Peer reviewe

    Mobilizing cognition for speeded action: try-harder instructions promote motivated readiness in the constant-foreperiod paradigm

    No full text
    We examined the effect of motivational readiness on cognitive performance. An important but still not sufficiently elaborated question is whether individuals can voluntarily increase cognitive efficiency for an impending target event, given sufficient preparation time. Within the framework of the constant-foreperiod design (comparing reaction time performance in blocks of short and long foreperiod intervals, FPs), we examined the effect of an instruction to try harder (instructional cue: standard vs. effort) in a choice-reaction task on performance speed and variability. Proceeding from previous theoretical considerations, we expected the instruction to speed-up processing irrespective of FP length, while error rate should be increased in the short-FP but decreased in the long-FP condition. Overall, the results confirmed this prediction. Importantly, the distributional (ex-Gaussian and delta plot) analysis revealed that the instruction to try harder decreased distributional skewness (i.e., longer percentiles were more affected), indicating that mobilization ensured temporal performance stability (persistence)

    Control and prevention of hepatitis B virus infection

    No full text
    corecore