18 research outputs found

    How many motoric body representations can we grasp?

    Get PDF
    At present there is a debate on the number of body representations in the brain. The most commonly used dichotomy is based on the body image, thought to underlie perception and proven to be susceptible to bodily illusions, versus the body schema, hypothesized to guide actions and so far proven to be robust against bodily illusions. In this rubber hand illusion study we investigated the susceptibility of the body schema by manipulating the amount of stimulation on the rubber hand and the participant’s hand, adjusting the postural configuration of the hand, and investigating a grasping rather than a pointing response. Observed results showed for the first time altered grasping responses as a consequence of the grip aperture of the rubber hand. This illusion-sensitive motor response challenges one of the foundations on which the dichotomy is based, and addresses the importance of illusion induction versus type of response when investigating body representations

    Functional Connectivity in Tactile Object Discrimination—A Principal Component Analysis of an Event Related fMRI-Study

    Get PDF
    BACKGROUND: Tactile object discrimination is an essential human skill that relies on functional connectivity between the neural substrates of motor, somatosensory and supramodal areas. From a theoretical point of view, such distributed networks elude categorical analysis because subtraction methods are univariate. Thus, the aim of this study was to identify the neural networks involved in somatosensory object discrimination using a voxel-based principal component analysis (PCA) of event-related functional magnetic resonance images. METHODOLOGY/PRINCIPAL FINDINGS: Seven healthy, right-handed subjects aged between 22 and 44 years were required to discriminate with their dominant hand the length differences between otherwise identical parallelepipeds in a two-alternative forced-choice paradigm. Of the 34 principal components retained for analysis according to the 'bootstrapped' Kaiser-Guttman criterion, t-tests applied to the subject-condition expression coefficients showed significant mean differences between the object presentation and inter-stimulus phases in PC 1, 3, 26 and 32. Specifically, PC 1 reflected object exploration or manipulation, PC 3 somatosensory and short-term memory processes. PC 26 evinced the perception that certain parallelepipeds could not be distinguished, while PC 32 emerged in those choices when they could be. Among the cerebral regions evident in the PCs are the left posterior parietal lobe and premotor cortex in PC 1, the left superior parietal lobule (SPL) and the right cuneus in PC 3, the medial frontal and orbitofrontal cortex bilaterally in PC 26, and the right intraparietal sulcus, anterior SPL and dorsolateral prefrontal cortex in PC 32. CONCLUSIONS/SIGNIFICANCE: The analysis provides evidence for the concerted action of large-scale cortico-subcortical networks mediating tactile object discrimination. Parallel to activity in nodes processing object-related impulses we found activity in key cerebral regions responsible for subjective assessment and validation

    Motor imagery and action observation: cognitive tools for rehabilitation

    Get PDF
    Rehabilitation, for a large part may be seen as a learning process where old skills have to be re-acquired and new ones have to be learned on the basis of practice. Active exercising creates a flow of sensory (afferent) information. It is known that motor recovery and motor learning have many aspects in common. Both are largely based on response-produced sensory information. In the present article it is asked whether active physical exercise is always necessary for creating this sensory flow. Numerous studies have indicated that motor imagery may result in the same plastic changes in the motor system as actual physical practice. Motor imagery is the mental execution of a movement without any overt movement or without any peripheral (muscle) activation. It has been shown that motor imagery leads to the activation of the same brain areas as actual movement. The present article discusses the role that motor imagery may play in neurological rehabilitation. Furthermore, it will be discussed to what extent the observation of a movement performed by another subject may play a similar role in learning. It is concluded that, although the clinical evidence is still meager, the use of motor imagery in neurological rehabilitation may be defended on theoretical grounds and on the basis of the results of experimental studies with healthy subjects

    Mirror Neurons, Prediction and Hemispheric Coordination; The Prioritizing of Intersubjectivity over 'Intrasubjectivity'

    Get PDF
    We observe that approaches to intersubjectivity, involving mirror neurons and involving emulation and prediction, have eclipsed discussion of those same mechanisms for achieving coordination between the two hemispheres of the human brain. We explore some of the implications of the suggestion that the mutual modelling of the two situated hemispheres (each hemisphere ‘second guessing’ the other) is a productive place to start in understanding the phylogenetic and ontogenetic development of cognition and of intersubjectivity

    Neural dynamics of learning sound-action associations

    Get PDF
    A motor component is pre-requisite to any communicative act as one must inherently move to communicate. To learn to make a communicative act, the brain must be able to dynamically associate arbitrary percepts to the neural substrate underlying the pre-requisite motor activity. We aimed to investigate whether brain regions involved in complex gestures (ventral pre-motor cortex, Brodmann Area 44) were involved in mediating association between novel abstract auditory stimuli and novel gestural movements. In a functional resonance imaging (fMRI) study we asked participants to learn associations between previously unrelated novel sounds and meaningless gestures inside the scanner. We use functional connectivity analysis to eliminate the often present confound of ‘strategic covert naming’ when dealing with BA44 and to rule out effects of non-specific reductions in signal. Brodmann Area 44, a region incorporating Broca's region showed strong, bilateral, negative correlation of BOLD (blood oxygen level dependent) response with learning of sound-action associations during data acquisition. Left-inferior-parietal-lobule (l-IPL) and bilateral loci in and around visual area V5, right-orbital-frontal-gyrus, right-hippocampus, left-para-hippocampus, right-head-of-caudate, right-insula and left-lingual-gyrus also showed decreases in BOLD response with learning. Concurrent with these decreases in BOLD response, an increasing connectivity between areas of the imaged network as well as the right-middle-frontal-gyrus with rising learning performance was revealed by a psychophysiological interaction (PPI) analysis. The increasing connectivity therefore occurs within an increasingly energy efficient network as learning proceeds. Strongest learning related connectivity between regions was found when analysing BA44 and l-IPL seeds. The results clearly show that BA44 and l-IPL is dynamically involved in linking gesture and sound and therefore provides evidence that one of the mechanisms required for the evolution of human communication is found within these motor regions
    corecore