25 research outputs found

    The effect of the “rod-and-frame” illusion on grip planning in a sequential object manipulation task

    Get PDF
    We investigated the effect of visual context (i.e., a visual illusion) on the planning of a sequential object manipulation task. Participants (n = 13) had to grasp a rod embedded in a “rod-and-frame” illusion and insert the rod-end into a tight hole in a pre-defined way. The grip type (defined by start posture, either pronated or supinated; and end posture, either comfortable or uncomfortable) used to grasp the rod was registered as a macroscopic variable of motor planning. Different rod orientations forced the participants to switch between grip types. As expected, most participants switched between pronated and supinated start postures, such that they ended the movement with a comfortable end posture. As it has been argued that planning is dependent on visual context information, we hypothesized that the visual illusion would affect the specific rod orientation at which participants would switch into a different grip type. This hypothesis was confirmed. More specifically, the illusion affected the critical spatial information that is used for action planning. Collectively, these findings are the first to show an effect of an illusion on motor planning in a sequential object manipulation task

    Reexamining the possible benefits of visual crowding: dissociating crowding from ensemble percepts

    Get PDF
    Peripheral objects and their features become indistinct when closely surrounding but nonoverlapping objects are present. Most models suggest that this phenomenon, called crowding, reflects limitations of visual processing, but an intriguing idea is that it may be, in part, adaptive. Specifically, the mechanism generating crowding may simultaneously facilitate ensemble representations of features, leaving meaningful information about clusters of objects. In two experiments, we tested whether visual crowding and the perception of ensemble features share a common mechanism. Observers judged the orientation of a crowded bar, or the ensemble orientation of all bars in the upper and lower visual fields. While crowding was predictably stronger in the upper relative to the lower visual field, the ensemble percept did not vary between the visual fields. Featural averaging within the crowded region does not always scale with the resolution limit defined by crowding, suggesting that dissociable processes contribute to visual crowding and ensemble percepts

    Turner syndrome and sexual differentiation of the brain: implications for understanding male-biased neurodevelopmental disorders

    Get PDF
    Turner syndrome (TS) is one of the most common sex chromosome abnormalities. Affected individuals often show a unique pattern of cognitive strengths and weaknesses and are at increased risk for a number of other neurodevelopmental conditions, many of which are more common in typical males than typical females (e.g., autism and attention-deficit hyperactivity disorder). This phenotype may reflect gonadal steroid deficiency, haploinsufficiency of X chromosome genes, failure to express parentally imprinted genes, and the uncovering of X chromosome mutations. Understanding the contribution of these different mechanisms to outcome has the potential to improve clinical care for individuals with TS and to better our understanding of the differential vulnerability to and expression of neurodevelopmental disorders in males and females. In this paper, we review what is currently known about cognition and brain development in individuals with TS, discuss underlying mechanisms and their relevance to understanding male-biased neurodevelopmental conditions, and suggest directions for future research

    Interactions between constituent single symmetries in multiple symmetry

    No full text
    Item does not contain fulltextAs a rule, the discriminability of multiple symmetries from random patterns increases with the number of symmetry axes, but this number does not seem to be the only determinant. In particular, multiple symmetries with orthogonal axes seem better discriminable than multiple symmetries with nonorthogonal axes. In six experiments on imperfect two-fold symmetry, we investigated whether this is due to extra structure in the form of so-called correlation rectangles, which arise only in the case of orthogonal axes, or to the relative orientation of the axes as such. The results suggest that correlation rectangles are not perceptually relevant and that the percept of a multiple symmetry results from an orientation-dependent interaction between the constituent single symmetries. The results can be accounted for by a model involving the analysis of symmetry at all orientations, smoothing (averaging over neighboring orientations), and extraction of peaks
    corecore