1,614 research outputs found

    Structure and dielectric properties of cubic Bi<inf>2</inf>(Zn <inf>1/3</inf>Ta<inf>2/3</inf>)<inf>2</inf> O<inf>7</inf> thin films

    Get PDF
    Pyrochlore Bi2(Zn1/3Ta2/3)2 O7 (BZT) films were prepared by pulsed laser deposition on Pt/TiO2/SiO2/Si substrates. In contrast to bulk monoclinic BZT ceramics, the BZT films have a cubic structure mediated by an interfacial layer. The dielectric properties of the cubic BZT films [Īµāˆ¼177, temperature coefficient of capacitance (TCC) āˆ¼-170 ppm/Ā°C] are much different from those of monoclinic BZT ceramics (Īµāˆ¼61, TCC āˆ¼+60 ppm/Ā°C). Increasing the thickness of the BZT films returns the crystal structure to the monoclinic phase, which allows the dielectric properties of the BZT films to be tuned without changing their chemical composition. Ā© 2009 American Institute of Physics

    Complexation and coacervation of like-charged polyelectrolytes inspired by mussels

    Get PDF
    It is well known that polyelectrolyte complexes and coacervates can form on mixing oppositely charged polyelectrolytes in aqueous solutions, due to mainly electrostatic attraction between the oppositely charged polymers. Here, we report the first (to the best of our knowledge) complexation and coacervation of two positively charged polyelectrolytes, which provides a new paradigm for engineering strong, self-healing interactions between polyelectrolytes underwater and a new marine mussel-inspired underwater adhesion mechanism. Unlike the conventional complex coacervate, the like-charged coacervate is aggregated by strong short-range cation-p interactions by overcoming repulsive electrostatic interactions. The resultant phase of the like-charged coacervate comprises a thin and fragile polyelectrolyte framework and round and regular pores, implying a strong electrostatic correlation among the polyelectrolyte frameworks. The like-charged coacervate possesses a very low interfacial tension, which enables this highly positively charged coacervate to be applied to capture, carry, or encapsulate anionic biomolecules and particles with a broad range of applications.113320Ysciescopu

    TNF-alpha differentially modulates subunit levels of respiratory electron transport complexes of ER/PR plus ve/-ve breast cancer cells to regulate mitochondrial complex activity and tumorigenic potential

    Get PDF
    Background: Tumor necrosis factor-Ī± (TNF-Ī±) is an immunostimulatory cytokine that is consistently high in the breast tumor microenvironment (TME); however, its differential role in mitochondrial functions and cell survival in ER/PR +ve and ER/PR āˆ’ve breast cancer cells is not well understood. Methods: In the current study, we investigated TNF-Ī± modulated mitochondrial proteome using high-resolution mass spectrometry and identified the differentially expressed proteins in two different breast cancer cell lines, ER/PR positive cell line; luminal, MCF-7 and ER/PR negative cell line; basal-like, MDA-MB-231 and explored its implication in regulating the tumorigenic potential of breast cancer cells. We also compared the activity of mitochondrial complexes, ATP, and ROS levels between MCF-7 and MDA-MB-231 in the presence of TNF-Ī±. We used Tumor Immune Estimation Resource (TIMER) webserver to analyze the correlation between TNF-Ī± and mitochondrial proteins in basal and luminal breast cancer patients. Kaplan-Meier method was used to analyze the correlation between mitochondrial protein expression and survival of breast cancer patients. Results: The proteome analysis revealed that TNF-Ī± differentially altered the level of critical proteins of mitochondrial respiratory chain complexes both in MCF-7 and MDA-MB-231, which correlated with differential assembly and activity of mitochondrial ETC complexes. The inhibition of the glycolytic pathway in the presence of TNF-Ī± showed that glycolysis is indispensable for the proliferation and clonogenic ability of MDA-MB-231 cells (ER/ PR āˆ’ve) as compared to MCF-7 cells (ER/PR +ve). The TIMER database showed a negative correlation between the expressions of TNF-Ī± and key regulators of mitochondrial OXPHOS complexes in basal breast vs lobular carcinoma. Conversely, patient survival analysis showed an improved relapse-free survival with increased expression of identified proteins of ETC complexes and survival of the breast cancer patients. Conclusion: The evidence presented in our study convincingly demonstrates that TNF-Ī± regulates the survival and proliferation of aggressive tumor cells by modulating the levels of critical assembly factors and subunits involved in mitochondrial respiratory chain supercomplexes organization and function. This favors the rewiring of mitochondrial metabolism towards anaplerosis to support the survival and proliferation of breast cancer cells. Collectively, the results strongly suggest that TNF-Ī± differentially regulates metabolic adaptation in ER/PR +ve (MCF- 7) and ER/PR āˆ’ve (MDA-MB-231) cells by modulating the mitochondrial supercomplex assembly and activity

    Human Mas-related G protein-coupled receptors-X1 induce chemokine receptor 2 expression in rat dorsal root ganglia neurons and release of chemokine ligand 2 from the human LAD-2 mast cell line

    Get PDF
    Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain

    The developmental state, speculative urbanisation and the politics of displacement in gentrifying Seoul

    Get PDF
    What does gentrification mean under speculative urbanisation led by a strong developmental state? This paper analyses the contemporary history of Seoulā€™s urban redevelopment, arguing that new-build gentrification is an endogenous process embedded in Koreaā€™s highly speculative urban development processes from the 1980s. Property owners, construction firms and local/central governments coalesce, facilitating the extraction of exchange value by closing the rent gap. Displacement of poorer owner-occupiers and tenants was requisite for the success of speculative accumulation. Furthermore, the paper also contends that Koreaā€™s speculative urbanisation under the strong developmental (and later (neo-)liberalising) state has rendered popular resistance to displacement ineffective despite its initial success in securing state concessions. Examining the experience of Seoul in times of condensed industrialisation and speculative urbanisation helps inform the existing literature on gentrification by resorting to non-Western empirics

    Develop a cost model to evaluate the economic benefit of remanufacturing based on specific technique

    Get PDF
    Remanufacturing is a process of recovering used products to a like-new condition. It can potentially achieve considerable economic, environmental and social benefits in many applications. However, its economic benefit varies for different products and remanufacturing processes. This research aims to develop a framework and cost model to quantitatively evaluate the benefits of remanufacturing techniques to assist the decision making on end-of-life strategies. Additive manufacturing-based remanufacturing process has been modelled first, then cost breakdown structure for the process has been created, and the cost model has been developed. Validation of the cost model has been conducted based on expert judgement, and a case study has been carried out by using the developed cost model to compare the benefit of remanufacturing a specified component or making a new one

    Synthesis and Visible-Light Photocatalytic Property of Bi2WO6Hierarchical Octahedron-Like Structures

    Get PDF
    A novel octahedron-like hierarchical structure of Bi2WO6has been fabricated by a facile hydrothermal method in high quantity. XRD, SEM, TEM, and HRTEM were used to characterize the product. The results indicated that this kind of Bi2WO6crystals had an average size of ~4 Ī¼m, constructed by quasi-square single-crystal nanosheets assembled in a special fashion. The formation of octahedron-like hierarchical structure of Bi2WO6depended crucially on the pH value of the precursor suspensions. The photocatalytic activity of the hierarchical Bi2WO6structures toward RhB degradation under visible light was investigated, and it was found to be significantly better than that of the sample fabricated by SSR. The better photocatalytic property should be strongly associated with the high specific surface area and the abundant pore structure of the hierarchical octahedron-like Bi2WO6

    Sensitivity and specificity of blood-fluid levels for oral anticoagulant-associated intracerebral haemorrhage

    Get PDF
    Intracerebral haemorrhage (ICH) is a life-threatening emergency, the incidence of which has increased in part due to an increase in the use of oral anticoagulants. A blood-fluid level within the haematoma, as revealed by computed tomography (CT), has been suggested as a marker for oral anticoagulant-associated ICH (OAC-ICH), but the diagnostic specificity and prognostic value of this finding remains unclear. In 855 patients with CT-confirmed acute ICH scanned within 48 h of symptom onset, we investigated the sensitivity and specificity of the presence of a CT-defined blood-fluid level (rated blinded to anticoagulant status) for identifying concomitant anticoagulant use. We also investigated the association of the presence of a blood-fluid level with six-month case fatality. Eighteen patients (2.1%) had a blood-fluid level identified on CT; of those with a blood-fluid level, 15 (83.3%) were taking anticoagulants. The specificity of blood-fluid level for OAC-ICH was 99.4%; the sensitivity was 4.2%. We could not detect an association between the presence of a blood-fluid level and an increased risk of death at six months (ORā€‰=ā€‰1.21, 95% CI 0.28ā€“3.88, pā€‰=ā€‰0.769). The presence of a blood-fluid level should alert clinicians to the possibility of OAC-ICH, but absence of a blood-fluid level is not useful in excluding OAC-ICH
    • ā€¦
    corecore