6,246 research outputs found

    Remote preparation of quantum states

    Get PDF
    Remote state preparation is the variant of quantum state teleportation in which the sender knows the quantum state to be communicated. The original paper introducing teleportation established minimal requirements for classical communication and entanglement but the corresponding limits for remote state preparation have remained unknown until now: previous work has shown, however, that it not only requires less classical communication but also gives rise to a trade-off between these two resources in the appropriate setting. We discuss this problem from first principles, including the various choices one may follow in the definitions of the actual resources. Our main result is a general method of remote state preparation for arbitrary states of many qubits, at a cost of 1 bit of classical communication and 1 bit of entanglement per qubit sent. In this "universal" formulation, these ebit and cbit requirements are shown to be simultaneously optimal by exhibiting a dichotomy. Our protocol then yields the exact trade-off curve for arbitrary ensembles of pure states and pure entangled states (including the case of incomplete knowledge of the ensemble probabilities), based on the recently established quantum-classical trade-off for quantum data compression. The paper includes an extensive discussion of our results, including the impact of the choice of model on the resources, the topic of obliviousness, and an application to private quantum channels and quantum data hiding.Comment: 21 pages plus 2 figures (eps), revtex4. v2 corrects some errors and adds obliviousness discussion. v3 has section VI C deleted and various minor oversights correcte

    Modeling and Analysis of Power Processing Systems

    Get PDF
    The feasibility of formulating a methodology for the modeling and analysis of aerospace electrical power processing systems is investigated. It is shown that a digital computer may be used in an interactive mode for the design, modeling, analysis, and comparison of power processing systems

    NIMBUS-5 sounder data processing system. Part 2: Results

    Get PDF
    The Nimbus-5 spacecraft carries infrared and microwave radiometers for sensing the temperature distribution of the atmosphere. Methods developed for obtaining temperature profiles from the combined set of infrared and microwave radiation measurements are described. Algorithms used to determine (a) vertical temperature and water vapor profiles, (b) cloud height, fractional coverage, and liquid water content, (c) surface temperature, and (d) total outgoing longwave radiation flux are described. Various meteorological results obtained from the application of the Nimbus-5 sounding data processing system during 1973 and 1974 are presented

    Multi-kilowatt modularized spacecraft power processing system development

    Get PDF
    A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations

    A Comparison of the High-Frequency Magnetic Fluctuations in Insulating and Superconducting La2-xSrxCuO4

    Full text link
    Inelastic neutron scattering performed at a spallation source is used to make absolute measurements of the dynamic susceptibility of insulating La2CuO4 and superconducting La2-xSrxCuO4 over the energy range 15<EN<350 meV. The effect of Sr doping on the magnetic excitations is to cause a large broadening in wavevector and a substantial change in the spectrum of the local spin fluctuations. Comparison of the two compositions reveals a new energy scale of 22 meV in La1.86Sr0.14CuO4.Comment: RevTex, 7 Pages, 4 postscript figure

    The asymptotic entanglement cost of preparing a quantum state

    Get PDF
    We give a detailed proof of the conjecture that the asymptotic entanglement cost of preparing a bipartite state \rho is equal to the regularized entanglement of formation of \rho.Comment: 7 pages, no figure

    Qubit-Qutrit Separability-Probability Ratios

    Full text link
    Paralleling our recent computationally-intensive (quasi-Monte Carlo) work for the case N=4 (quant-ph/0308037), we undertake the task for N=6 of computing to high numerical accuracy, the formulas of Sommers and Zyczkowski (quant-ph/0304041) for the (N^2-1)-dimensional volume and (N^2-2)-dimensional hyperarea of the (separable and nonseparable) N x N density matrices, based on the Bures (minimal monotone) metric -- and also their analogous formulas (quant-ph/0302197) for the (non-monotone) Hilbert-Schmidt metric. With the same seven billion well-distributed (``low-discrepancy'') sample points, we estimate the unknown volumes and hyperareas based on five additional (monotone) metrics of interest, including the Kubo-Mori and Wigner-Yanase. Further, we estimate all of these seven volume and seven hyperarea (unknown) quantities when restricted to the separable density matrices. The ratios of separable volumes (hyperareas) to separable plus nonseparable volumes (hyperareas) yield estimates of the separability probabilities of generically rank-six (rank-five) density matrices. The (rank-six) separability probabilities obtained based on the 35-dimensional volumes appear to be -- independently of the metric (each of the seven inducing Haar measure) employed -- twice as large as those (rank-five ones) based on the 34-dimensional hyperareas. Accepting such a relationship, we fit exact formulas to the estimates of the Bures and Hilbert-Schmidt separable volumes and hyperareas.(An additional estimate -- 33.9982 -- of the ratio of the rank-6 Hilbert-Schmidt separability probability to the rank-4 one is quite clearly close to integral too.) The doubling relationship also appears to hold for the N=4 case for the Hilbert-Schmidt metric, but not the others. We fit exact formulas for the Hilbert-Schmidt separable volumes and hyperareas.Comment: 36 pages, 15 figures, 11 tables, final PRA version, new last paragraph presenting qubit-qutrit probability ratios disaggregated by the two distinct forms of partial transpositio

    Excitations in antiferromagnetic cores of superconducting vortices

    Full text link
    We study excitations of the predicted antiferromagnetically ordered vortex cores in the superconducting phase of the newly proposed SO(5) model of strongly correlated electrons. Using experimental data from the literature we show that the susceptibilities in the spin sector and the charge sector are nearly equal, and likewise for the stiffnesses. In the case of strict equality SO(5) symmetry is possible, and we find that if present the vortices give rise to an enhanced neutron scattering cross section near the so called pi resonance at 41 meV. In the case of broken SO(5) symmetry two effects are predicted. Bound excitations can exist in the vortex cores with ``high'' excitation energies slightly below 41 meV, and the massless Goldstone modes corresponding to the antiferromagnetic ordering of the core can acquire a mass and show up as core excitation with ``low'' excitation energies around 2 meV.Comment: 9 pages, RevTeX, including 3 postscript figures, submitted to Phys. Rev. B, July 10, 199

    Irrigating Agricultural Land with Sugarbeet Processing Wastewater

    Get PDF
    Some sugarbeet processors are irrigating agricultural land for the treatment and disposal of processing wastewater. The wastewater contains organic matter (COD) and inorganic nutrients, as well as inorganic salts. Experiments on irrigating with sugarbeet processing wastewater were conducted at plants in America. Wastewater irrigation schedules were imposed to determine optimum irrigation rates. Nitrogen application in the wastewater ranged from 275 to 1400 kg ha-Âč . Phosphorus applications were low and potassium varied widely. COD removal in some of the fields was unsatisfactory in the first year of irrigation but improved as the fields were conditioned by continued wastewater irrigation. With good management and proper loading, sugarbeet processing wastewater can be used for irrigation with satisfactory results
    • 

    corecore