180 research outputs found

    348— Establishment of peptide aggregation process

    Get PDF
    The adsorption of alpha-synuclein (a-syn) was studied by attempting the adsorption over the surface of nano-gold colloidal particles as a function of concentration of the a-syn. The change in surface property caused by the degree of peptide coverage was hypothesized to reflect the aggregation formation channels. As the concentration of the a-syn increased, the aggregation size had increased in a non-linear fashion. Currently, we hypothesize two different aggregation channels and one is a gradual growth and the other is a step function type of behavior which holds a certain threshold to form an aggregate

    An improved purification of ECF1 and ECF1F0 by using a cytochrome bo-deficient strain of Escherichia coli facilitates crystallization of these complexes

    Get PDF
    AbstractA novel strategy, which employs a cytochrome bo-lacking strain (GO104) and a modified isolation procedure provides an effective approach for obtaining much purer preparations of ECF1F0 than described previously, as well as for isolating homogeneous and protein-chemically pure ECF1. ECF1 obtained in this way could be crystallized by vapor-diffusion using polyethylene glycol (PEG) as a precipitant in a form suitable for X-ray diffraction analysis. The crystals belong to the orthorhombic space group P212121, with lattice parameters a=110, b=134, and c=269 Å, and diffract to a resolution of at least 6.4 Å

    Phyllosilicate Transitions in Ferromagnesian Soils: Short-Range Order Materials and Smectites Dominate Secondary Phases

    Get PDF
    Analyses of X-ray diffraction (XRD) patterns taken by the CheMin instrument on the Curiosity Rover in Gale crater have documented the presence of clay minerals interpreted as smectites and a suite of amorphous to short-range order materials termed X-ray amorphous materials. These X-ray amorphous materials are commonly ironrich and aluminum poor and likely some of them are weathering products rather than primary glasses due to the presence of volatiles. Outstanding questions remain regarding the chemical composition and mineral structure of these X-ray amorphous materials and the smectites present at Gale crater and what they indicate about environmental conditions during their formation. To gain a better understanding of the mineral transitions that occur within ferromagnesian parent materials, we have investigated the development of secondary clay minerals and shortrange order materials in two soil chronosequences with varying climates developing on ultramafic bedrock. Field Sites: We investigated soil weathering within two field locations, the Klamath Mountains of Northern California, and the Tablelands of Newfoundland, Canada. Both sites possess age dated or correlated recently deglaciated soils and undated but substantially older soils. In the Klamath mountains the Trinity Ultramafic Body was deglaciated roughly 15,000 years bp while in the Tablelands a moraine was dated to about 17,600 years bp. The Klamath Mountains feature a seasonally wet and dry climate while the Tablelands are wet year-round with saturated soil conditions observed during sampling and standing water observed within 3 of 4 soil pit sampling locations

    Serpentinite weathering and implications for Mars

    Full text link
    In the search for life on Mars near-surface soil environments may be important habitats for life accessible to future missions. Serpentinite rocks have been documented on Mars, as well as other clay minerals including smectite and kaolinites. Previous studies of soils formed on serpentinites on Earth have documented the formation of extensive clays. Serpentinites are additionally of interest as habitats for life such as methanogens. Here we examine weathering of serpentinites from bedrock to soil surface, as a potential route for the formation of clay minerals on Mars from abundant ultramafic minerals. We additionally test for the presence of Fe-oxidizing bacteria in weathered serpentinite rocks. Fe-oxidizing bacteria have been previously demonstrated to affect dissolution rates of ultramafic minerals, and may produce important biosignatures

    071— Geneseo COVID-19 Study Group V: Long-Term Pharmaceutical Strategies and Prevention of COVID-19

    Get PDF
    A vaccine is a form of weakened or killed virus that is inserted in the body in the method of an injection. Some vaccines, such as the COVID-19 vaccine, contain only a part of the virus. This stimulates the immune system to produce immunity to a specific disease instead of first experiencing the disease to build that protection. The COVID-19 vaccine is a messenger RNA (mRNA) vaccine that directs our cells how to make a specific protein (“spike protein”) to trigger an immune response inside our body, thus producing antibodies which protect us against COVID-19 particles. Pfizer-BioNTech, Moderna, and Johnson & Johnson are the authorized vaccines currently in distribution. Looking ahead, public health structures worldwide will continue to implement safety measures and track disease trends in order to protect the health of the human population. There are many steps being taken in the right direction with regards to vaccine distribution, testing, pharmaceuticals, treatment and policy. However, it will take the cooperation of all people to choose healthy behaviors such as masking, social distancing, and getting vaccinated, in order to achieve a state in which we may be safe to continue our lives as normal

    The Identity of Proteins Associated with a Small Heat Shock Protein during Heat Stress \u3ci\u3ein Vivo\u3c/i\u3e Indicates That These Chaperones Protect a Wide Range of Cellular Functions

    Get PDF
    The small heat shock proteins (sHSPs) are a ubiquitous class of ATP-independent chaperones believed to prevent irreversible protein aggregation and to facilitate subsequent protein renaturation in cooperation with ATP-dependent chaperones. Although sHSP chaperone activity has been studied extensively in vitro, understanding the mechanism of sHSP function requires identification of proteins that are sHSP substrates in vivo. We have used both immunoprecipitation and affinity chromatography to recover 42 proteins that specifically interact with Synechocystis Hsp16.6 in vivo during heat treatment. These proteins can all be released from Hsp16.6 by the ATP-dependent activity of DnaK and cochaperones and are heat-labile. Thirteen of the putative substrate proteins were identified by mass spectrometry and reveal the potential for sHSPs to protect cellular functions as diverse as transcription, translation, cell signaling, and secondary metabolism. One of the putative substrates, serine esterase, was purified and tested directly for interaction with purified Hsp16.6. Hsp16.6 effectively formed soluble complexes with serine esterase in a heat-dependent fashion, thereby preventing formation of insoluble serine esterase aggregates. These data offer critical insights into the characteristics of native sHSP substrates and extend and provide in vivo support for the chaperone model of sHSP function

    The Identity of Proteins Associated with a Small Heat Shock Protein during Heat Stress \u3ci\u3ein Vivo\u3c/i\u3e Indicates That These Chaperones Protect a Wide Range of Cellular Functions

    Get PDF
    The small heat shock proteins (sHSPs) are a ubiquitous class of ATP-independent chaperones believed to prevent irreversible protein aggregation and to facilitate subsequent protein renaturation in cooperation with ATP-dependent chaperones. Although sHSP chaperone activity has been studied extensively in vitro, understanding the mechanism of sHSP function requires identification of proteins that are sHSP substrates in vivo. We have used both immunoprecipitation and affinity chromatography to recover 42 proteins that specifically interact with Synechocystis Hsp16.6 in vivo during heat treatment. These proteins can all be released from Hsp16.6 by the ATP-dependent activity of DnaK and cochaperones and are heat-labile. Thirteen of the putative substrate proteins were identified by mass spectrometry and reveal the potential for sHSPs to protect cellular functions as diverse as transcription, translation, cell signaling, and secondary metabolism. One of the putative substrates, serine esterase, was purified and tested directly for interaction with purified Hsp16.6. Hsp16.6 effectively formed soluble complexes with serine esterase in a heat-dependent fashion, thereby preventing formation of insoluble serine esterase aggregates. These data offer critical insights into the characteristics of native sHSP substrates and extend and provide in vivo support for the chaperone model of sHSP function

    Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars

    Get PDF
    Clay mineral-bearing locations have been targeted for martian exploration as potentially habitable environments and as possible repositories for the preservation of organic matter. Although organic matter has been detected at Gale Crater, Mars, its concentrations are lower than expected from meteoritic and indigenous igneous and hydrothermal reduced carbon. We conducted synthesis experiments motivated by the hypothesis that some clay mineral formation may have occurred under oxidized conditions conducive to the destruction of organics. Previous work has suggested that anoxic and/or reducing conditions are needed to synthesize the Fe-rich clay mineral nontronite at low temperatures. In contrast, our experiments demonstrated the rapid formation of Fe-rich clay minerals of variable crystallinity from aqueous Fe^(3+) with small amounts of aqueous Mg^(2+). Our results suggest that Fe-rich clay minerals such as nontronite can form rapidly under oxidized conditions, which could help explain low concentrations of organics within some smectite-containing rocks or sediments on Mars

    Saponite Dissolution Experiments and Implications for Mars

    Get PDF
    Recent work suggests that the mineralogical sequence of the Murray formation at Gale crater may have resulted from diagenetic alteration after sedimentation, or deposition in a stratified lake with oxic surface and anoxic bottom waters. Fe-containing clay minerals are common both at Gale crater, and throughout the Noachian-aged terrains on Mars. These clay minerals are primarily ferric (Fe3+), and previous work suggests that these ferric clay minerals may result from alteration of ferrous (Fe2+) smectites that were oxidized after deposition. The detection of trioctahedral smectites at Gale crater by CheMin suggests Fe2+ smectite was also deposited during the early Hesperian. However, due to their sensitivity to oxygen, Fe2+ smectites are difficult to analyze on Earth and very few saponite dissolution rates exist in the literature. To the best of our knowledge, no experiments have measured the dissolution rates of ferrous saponites under oxidizing and reducing conditions. In order to better understand the characteristics of water-rock interaction at Gale crater, particularly the oxidation state, we report our results to date on ongoing syntheses of ferrous and magnesium saponites and dissolution experiments of natural saponite under ambient conditions. Future experiments will include the dissolution of synthetic ferric, ferrous, and magnesium saponites under oxidizing and anoxic conditions at a range of pH values
    corecore