22,031 research outputs found

    Clustering of the Diffuse Infrared Light from the COBE DIRBE maps. I. C(0)C(0) and limits on the near-IR background

    Get PDF
    This paper is devoted to studying the CIB through its correlation properties. We studied the limits on CIB anisotropy in the near IR (1.25, 2.2, and 3.5 \um, or J,  K,  LJ,\;K,\;L) bands at a scale of 0.7\deg\ using the COBE\footnote{ The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) is responsible for the design, development, and operation of the {\it COBE}. Scientific guidance is provided by the {\it COBE} Science Working Group. GSFC is also responsible for the development of the analysis software and for the production of the mission data sets.} Diffuse Infrared Background Experiment (DIRBE) data. In single bands we obtain the upper limits on the zero-lag correlation signal C(0)=⟨(νδIν)2⟩<3.6×10−16,  5.1×10−17,  5.7×10−18C(0)= \langle(\nu \delta I_\nu)^2\rangle < 3.6 \times 10^{-16},\; 5.1 \times 10^{-17},\; 5.7 \times 10^{-18} \w2m4sr2 for the J,K,LJ,K,L bands respectively. The DIRBE data exhibit a clear color between the various bands with a small dispersion. On the other hand most of the CIB is expected to come from redshifted galaxies and thus should have different color properties. We use this observation to develop a `color subtraction' method of linear combinations of maps at two different bands. This method is expected to suppress the dominant fluctuations from foreground stars and nearby galaxies, while not reducing (or perhaps even amplifying) the extragalactic contribution to C(0)C(0). Applying this technique gives significantly lower and more isotropic limits.Comment: 44 pages postcript; includes 5 tables, 14 figures. Astrophysical Journal, in pres

    Clustering of DIRBE Light and IR Background

    Get PDF
    We outline a new method for estimating the cosmic infrared background using the spatial and spectral correlation properties of infrared maps. The cosmic infrared background from galaxies should have a minimum fluctuation of the order of 10\% on angular scales of the order of 1\deg. We show that a linear combination of maps at different wavelengths can greatly reduce the fluctuations produced by foreground stars, while not eliminating the fluctuations of the background from high redshift galaxies. The method is potentially very powerful, especially at wavelengths where the foreground is bright but smooth.Comment: 7 pages postcript, talk at "Unveiling the cosmic infrared background" workshop, College Park, M

    In situ synthesis of size-controlled, stable silver nanoparticles within ultrashort peptide hydrogels and their anti-bacterial properties

    Get PDF
    We have developed a silver-releasing biomaterial with promising potential for wound healing applications. The material is made of ultrashort peptides which can self-assemble in water to form hydrogels. Silver nanoparticles (Ag NPs) were synthesized in situ within the biomaterial, using only UV irradiation and no additional chemical reducing agents. The synthetic strategy allows precise control of the nanoparticle size, with the network of peptide fibers preventing aggregation of Ag NPs. The biomaterial shows increased mechanical strength compared to the hydrogel control. We observed a sustained release of Ag NPs over a period of 14 days. This is a crucial prerequisite for effective anti-bacterial therapy. The ability to inhibit bacterial growth was tested using different bacterial strains, namely gram-negative Escherichia coli and Pseudomonas aeruginosa and gram-positive Staphylococcus aureus. Inhibition of bacterial growth was observed for all strains. The best results were obtained for Pseudomonas aeruginosa which is known for exhibiting multidrug resistance. Biocompatibility studies on HDFa cells, using Ag NP-containing hydrogels, did not show any significant influence on cell viability. We propose this silver-releasing hydrogel as an excellent biomaterial with great potential for applications in wound healing due to its low silver content, sustained silver nanoparticle release and biocompatibility

    A non-perturbative method of calculation of Green functions

    Full text link
    A new method for non-perturbative calculation of Green functions in quantum mechanics and quantum field theory is proposed. The method is based on an approximation of Schwinger-Dyson equation for the generating functional by exactly soluble equation in functional derivatives. Equations of the leading approximation and the first step are solved for Ï•d4\phi^4_d-model. At d=1d=1 (anharmonic oscillator) the ground state energy is calculated. The renormalization program is performed for the field theory at d=2,3d=2,3. At d=4d=4 the renormalization of the coupling involves a trivialization of the theory.Comment: 13 pages, Plain LaTex, no figures, some discussion of results for anharmonic oscillator and a number of references are added, final version published in Journal of Physics

    1.0 Mm Maps and Radial Density Distributions of Southern Hii/molecular Cloud Complexes

    Get PDF
    Several 1.0 continuum mapping observations were made of seven southern hemisphere h12/molecular cloud complexes with 65 arcsec resolution. The radial density distribution of the clouds with central luminosity sources was determined observationally. Strong similarities in morphology and general physical conditions were found to exist among all of the southern clouds in the sample

    Growth control of GaAs nanowires using pulsed laser deposition with arsenic over pressure

    Full text link
    Using pulsed laser ablation with arsenic over pressure, the growth conditions for GaAs nanowires have been systematically investigated and optimized. Arsenic over pressure with As2_2 molecules was introduced to the system by thermal decomposition of polycrystalline GaAs to control the stoichiometry and shape of the nanowires during growth. GaAs nanowires exhibit a variety of geometries under varying arsenic over pressure, which can be understood by different growth processes via vapor-liquid-solid mechanism. Single-crystal GaAs nanowires with uniform diameter, lengths over 20 μ\mum, and thin surface oxide layer were obtained and can potentially be used for further electronic characterization
    • …
    corecore