329 research outputs found

    Relating branes and matrices

    Full text link
    We construct a general map between a Dp-brane with magnetic flux and a matrix configuration of D0-branes, by showing how one can rewrite the boundary state of the Dp-brane in terms of its D0-brane constituents. This map gives a simple prescription for constructing the matrices of fuzzy spaces corresponding to branes of arbitrary shape and topology. Since we explicitly identify the D0-brane degrees of freedom on the brane, we also derive the D0-brane charge of the brane in a very direct way including the A-genus term. As a check on our formalism, we use our map to derive the abelian-Born-Infeld equations of motion from the action of the D0-brane matrices.Comment: 28 pages, Late

    Non-BPS Dyons and Branes in the Dirac-Born-Infeld Theory

    Get PDF
    Non-BPS dyon solutions to D3-brane actions are constructed when one or more scalar fields describing transverse fluctuations of the brane, are considered. The picture emerging from such non-BPS configurations is analysed, in particular the response of the D-brane-string system to small perturbations.Comment: 16 pages, 4 figures, Revtex fil

    Shimura curve computations via K3 surfaces of Neron-Severi rank at least 19

    Get PDF
    It is known that K3 surfaces S whose Picard number rho (= rank of the Neron-Severi group of S) is at least 19 are parametrized by modular curves X, and these modular curves X include various Shimura modular curves associated with congruence subgroups of quaternion algebras over Q. In a family of such K3 surfaces, a surface has rho=20 if and only if it corresponds to a CM point on X. We use this to compute equations for Shimura curves, natural maps between them, and CM coordinates well beyond what could be done by working with the curves directly as we did in ``Shimura Curve Computations'' (1998) = Comment: 16 pages (1 figure drawn with the LaTeX picture environment); To appear in the proceedings of ANTS-VIII, Banff, May 200

    Spins, charges and currents at Domain Walls in a Quantum Hall Ising Ferromagnet

    Full text link
    We study spin textures in a quantum Hall Ising ferromagnet. Domain walls between ferro and unpolarized states at ν=2\nu=2 are analyzed with a functional theory supported by a microscopic calculation. In a neutral wall, Hartree repulsion prevents the appearance of a fan phase provoked by a negative stiffness. For a charged system, electrons become trapped as solitons at the domain wall. The size and energy of the solitons are determined by both Hartree and spin-orbit interactions. Finally, we discuss how electrical transport takes place through the domain wall.Comment: 4 pages, 3 figures include

    Gravity duals of half-BPS Wilson loops

    Full text link
    We explicitly construct the fully back-reacted half-BPS solutions in Type IIB supergravity which are dual to Wilson loops with 16 supersymmetries in N=4\mathcal{N}=4 super Yang-Mills. In a first part, we use the methods of a companion paper to derive the exact general solution of the half-BPS equations on the space AdS2×S2×S4×ΣAdS_2 \times S^2 \times S^4 \times \Sigma, with isometry group SO(2,1)×SO(3)×SO(5)SO(2,1)\times SO(3) \times SO(5) in terms of two locally harmonic functions on a Riemann surface Σ\Sigma with boundary. These solutions, generally, have varying dilaton and axion, and non-vanishing 3-form fluxes. In a second part, we impose regularity and topology conditions. These non-singular solutions may be parametrized by a genus g0g \geq 0 hyperelliptic surface Σ\Sigma, all of whose branch points lie on the real line. Each genus gg solution has only a single asymptotic AdS5×S5AdS_5 \times S^5 region, but exhibits gg homology 3-spheres, and an extra gg homology 5-spheres, carrying respectively RR 3-form and RR 5-form charges. For genus 0, we recover AdS5×S5AdS_5 \times S^5 with 3 free parameters, while for genus g1g \geq 1, the solution has 2g+52g+5 free parameters. The genus 1 case is studied in detail. Numerical analysis is used to show that the solutions are regular throughout the g=1g=1 parameter space. Collapse of a branch cut on Σ\Sigma subtending either a homology 3-sphere or a homology 5-sphere is non-singular and yields the genus g1g-1 solution. This behavior is precisely expected of a proper dual to a Wilson loop in gauge theory.Comment: 62 pages, LaTeX, 6 figures, v2: minor change

    Application of heavy-quark effective theory to lattice QCD: III. Radiative corrections to heavy-heavy currents

    Full text link
    We apply heavy-quark effective theory (HQET) to separate long- and short-distance effects of heavy quarks in lattice gauge theory. In this paper we focus on flavor-changing currents that mediate transitions from one heavy flavor to another. We stress differences in the formalism for heavy-light currents, which are discussed in a companion paper, showing how HQET provides a systematic matching procedure. We obtain one-loop results for the matching factors of lattice currents, needed for heavy-quark phenomenology, such as the calculation of zero-recoil form factors for the semileptonic decays BD()lνB\to D^{(*)}l\nu. Results for the Brodsky-Lepage-Mackenzie scale qq^* are also given.Comment: 35 pages, 17 figures. Program LatHQ2QCD to compute matching one-loop coefficients available at http://theory.fnal.gov/people/kronfeld/LatHQ2QCD

    Nucleon-nucleon coincidence measurement in the non-mesonic weak decay of 5_Lambda-He and 12_Lambda-C hypernuclei

    Full text link
    We have measured both yields of neutron-proton and neutron-neutron pairs emitted from the non-mesonic weak decay process of 5_Lambda-He and 12_Lambda-C hypernuclei produced via the (pi^+,K^+) reaction for the first time. We observed clean back-to-back correlation of the np- and nn-pairs in the coincidence spectra for both hypernuclei. The ratio of those back-to-back pair yields, Nnn / Nnp, must be close to the ratio of neutron- and proton-induced decay widths of the decay, Gn(Lambda n -> nn)/Gp(Lambda p -> np). The obtained ratios for each hypernuclei support recent calculations based on short-range interactions.Comment: 4 pages, 1 figure, International Nuclear Physics Conference (INPC 2004), Goteborg, Sweden, June 27 - July 2, 2004, to appear in Nuclear Physics

    Ghost D-brane, Supersymmetry and Matrix Model

    Full text link
    In this note we study the world volume theory of pairs of D-brane and ghost D-brane, which is shown to have 16 linear supersymmetries and 16 nonlinear supersymmetries. In particular we study a matrix model based on the pairs of D(-1)-brane and ghost D(-1)-brane. Since such pairs are supposed to be equivalent to the closed string vacuum, we expect all 32 supersymmetries should be unbroken. We show that the world volume theory of the pairs of D-brane and ghost D-brane has unbroken 32 supersymmetries even though a half of them are nonlinearly realized.Comment: 12 pages, references adde

    Electromagnetic vertex function of the pion at T > 0

    Full text link
    The matrix element of the electromagnetic current between pion states is calculated in quenched lattice QCD at a temperature of T=0.93TcT = 0.93 T_c. The nonperturbatively improved Sheikholeslami-Wohlert action is used together with the corresponding O(a){\cal O}(a) improved vector current. The electromagnetic vertex function is extracted for pion masses down to 360MeV360 {\rm MeV} and momentum transfers Q22.7GeV2Q^2 \le 2.7 {\rm GeV}^2.Comment: 17 pages, 8 figure
    corecore