30,607 research outputs found
Synchronizations in small-world networks of spiking neurons: Diffusive versus sigmoid couplings
By using a semi-analytical dynamical mean-field approximation previously
proposed by the author [H. Hasegawa, Phys. Rev. E, {\bf 70}, 066107 (2004)], we
have studied the synchronization of stochastic, small-world (SW) networks of
FitzHugh-Nagumo neurons with diffusive couplings. The difference and similarity
between results for {\it diffusive} and {\it sigmoid} couplings have been
discussed. It has been shown that with introducing the weak heterogeneity to
regular networks, the synchronization may be slightly increased for diffusive
couplings, while it is decreased for sigmoid couplings. This increase in the
synchronization for diffusive couplings is shown to be due to their local,
negative feedback contributions, but not due to the shorten average distance in
SW networks. Synchronization of SW networks depends not only on their structure
but also on the type of couplings.Comment: 17 pages, 8 figures, accepted in Phys. Rev. E with some change
Mechanism of Ambipolar Field-Effect Carrier Injections in One-Dimensional Mott Insulators
To clarify the mechanism of recently reported, ambipolar carrier injections
into quasi-one-dimensional Mott insulators on which field-effect transistors
are fabricated, we employ the one-dimensional Hubbard model attached to a
tight-binding model for source and drain electrodes. To take account of the
formation of Schottky barriers, we add scalar and vector potentials, which
satisfy the Poisson equation with boundary values depending on the drain
voltage, the gate bias, and the work-function difference. The current-voltage
characteristics are obtained by solving the time-dependent Schr\"odinger
equation in the unrestricted Hartree-Fock approximation. Its validity is
discussed with the help of the Lanczos method applied to small systems. We find
generally ambipolar carrier injections in Mott insulators even if the work
function of the crystal is quite different from that of the electrodes. They
result from balancing the correlation effect with the barrier effect. For the
gate-bias polarity with higher Schottky barriers, the correlation effect is
weakened accordingly, owing to collective transport in the one-dimensional
correlated electron systems.Comment: 21 pages, 10 figures, to appear in J. Phys. Soc. Jp
NMR Knight shifts and linewidths in the Ni‐Pd‐P and Ni‐Pt‐P metallic glasses: Composition and temperature dependences
NMR Knight shift and linewidth measurements are reported for the ^(31)P nuclei in the metallic glasses (Ni_(0.50)Pd_(0.50))100−_xP_x (where x=16 to 26.5) and (Ni_yPd_(1−y))_(80)P_(20) (where y=0.20 to 0.80), and both the ^(31)P and 195Pt nuclei in the metallic glass (Ni_yPt_(1−y))_(75)P_(25) (where y=0.20 to 0.68). The results are discussed in terms of the amorphous structure, electronic structure, and stability of transition metal + metalloid metallic glasses
Superconductivity of Quasi-One-Dimensional Electrons in Strong Magnetic Field
The superconductivity of quasi-one-dimensional electrons in the magnetic
field is studied. The system is described as the one-dimensional electrons with
no frustration due to the magnetic field. The interaction is assumed to be
attractive between electrons in the nearest chains, which corresponds to the
lines of nodes of the energy gap in the absence of the magnetic field. The
effective interaction depends on the magnetic field and the transverse
momentum. As the magnetic field becomes strong, the transition temperature of
the spin-triplet superconductivity oscillates, while that of the spin-singlet
increases monotonically.Comment: 15 pages, RevTeX, 3 PostScript figures in uuencoded compressed tar
file are appende
Experimental test of an entropic measurement uncertainty relation for arbitrary qubit observables
A tight information-theoretic measurement uncertainty relation is
experimentally tested with neutron spin-1/2 qubits. The noise associated to the
measurement of an observable is defined via conditional Shannon entropies and a
tradeoff relation between the noises for two arbitrary spin observables is
demonstrated. The optimal bound of this tradeoff is experimentally obtained for
various non-commuting spin observables. For some of these observables this
lower bound can be reached with projective measurements, but we observe that,
in other cases, the tradeoff is only saturated by general quantum measurements
(i.e., positive-operator valued measures), as predicted theoretically.Comment: 6 pages, 3 figure
Dynamical mean-filed approximation to small-world networks of spiking neurons: From local to global, and/or from regular to random couplings
By extending a dynamical mean-field approximation (DMA) previously proposed
by the author [H. Hasegawa, Phys. Rev. E {\bf 67}, 41903 (2003)], we have
developed a semianalytical theory which takes into account a wide range of
couplings in a small-world network. Our network consists of noisy -unit
FitzHugh-Nagumo (FN) neurons with couplings whose average coordination number
may change from local () to global couplings () and/or
whose concentration of random couplings is allowed to vary from regular
() to completely random (p=1). We have taken into account three kinds of
spatial correlations: the on-site correlation, the correlation for a coupled
pair and that for a pair without direct couplings. The original -dimensional {\it stochastic} differential equations are transformed to
13-dimensional {\it deterministic} differential equations expressed in terms of
means, variances and covariances of state variables. The synchronization ratio
and the firing-time precision for an applied single spike have been discussed
as functions of and . Our calculations have shown that with increasing
, the synchronization is {\it worse} because of increased heterogeneous
couplings, although the average network distance becomes shorter. Results
calculated by out theory are in good agreement with those by direct
simulations.Comment: 19 pages, 2 figures: accepted in Phys. Rev. E with minor change
Compressional properties of nuclear matter in the relativistic mean field theory with the excluded volume effects
Compressional properties of nuclear matter are studied by using the mean
field theory with the excluded volume effects of the nucleons. It is found that
the excluded volume effects make it possible to fit the empirical data of the
Coulomb coefficient of nucleus incompressibility, even if the volume
coefficient is small(MeV). However, the symmetry properties favor
MeV as in the cases of the mean field theory of point-like
nucleons.Comment: PACS numbers, 21.65.+f, 21.30.+
- …
