32,503 research outputs found
Evidence for GeV emission from the Galactic Center Fountain
The region near the Galactic center may have experienced recurrent episodes
of injection of energy in excess of 10 ergs due to repeated
starbursts involving more than 10 supernovae. This hypothesis can be
tested by measurements of -ray lines produced by the decay of
radioactive isotopes and positron annihilation, or by searches for pulsars
produced during starbursts. Recent OSSE observations of 511 keV emission
extending above the Galactic center led to the suggestion of a starburst driven
fountain from the Galactic center. We present EGRET observations that might
support this picture.Comment: 5 pages, 1 embedded Postscript figure. To appear in the Proceedings
of the Fourth Compton Symposiu
Coherent Dark States of Rubidium 87 in a Buffer Gas using Pulsed Laser Light
The coherent dark resonance between the hyperfine levels F=1, m=0 and F=2,
m=0 of the rubidium ground state has been observed experimentally with the
light of a pulsed mode-locked diode laser operating at the D1 transition
frequency. The resonance occurs whenever the pulse repetition frequency matches
an integer fraction of the rubidium 87 ground state hyperfine splitting of 6.8
GHz. Spectra have been taken by varying the pulse repetition frequency. Using
cells with argon as a buffer gas a linewidth as narrow as 149 Hz was obtained.
The rubidium ground state decoherence cross section 1.1*10^(-18) cm^2 for
collisions with xenon atoms has been measured for the first time with this
method using a pure isotope rubidium vapor cell and xenon as a buffer gas.Comment: 3 pages, 5 figures, 1 misprint correcte
Analysis of the loop length distribution for the negative weight percolation problem in dimensions d=2 through 6
We consider the negative weight percolation (NWP) problem on hypercubic
lattice graphs with fully periodic boundary conditions in all relevant
dimensions from d=2 to the upper critical dimension d=6. The problem exhibits
edge weights drawn from disorder distributions that allow for weights of either
sign. We are interested in in the full ensemble of loops with negative weight,
i.e. non-trivial (system spanning) loops as well as topologically trivial
("small") loops. The NWP phenomenon refers to the disorder driven proliferation
of system spanning loops of total negative weight. While previous studies where
focused on the latter loops, we here put under scrutiny the ensemble of small
loops. Our aim is to characterize -using this extensive and exhaustive
numerical study- the loop length distribution of the small loops right at and
below the critical point of the hypercubic setups by means of two independent
critical exponents. These can further be related to the results of previous
finite-size scaling analyses carried out for the system spanning loops. For the
numerical simulations we employed a mapping of the NWP model to a combinatorial
optimization problem that can be solved exactly by using sophisticated matching
algorithms. This allowed us to study here numerically exact very large systems
with high statistics.Comment: 7 pages, 4 figures, 2 tables, paper summary available at
http://www.papercore.org/Kajantie2000. arXiv admin note: substantial text
overlap with arXiv:1003.1591, arXiv:1005.5637, arXiv:1107.174
Search for GRB afterglows in the ROSAT all-sky survey
We report on the status of our search for X-ray afterglows of gamma-ray
bursts (GRBs) using the ROSAT all-sky survey data. The number of potential
X-ray afterglow candidates with respect to the expected number of beamed GRBs
allows to constrain the relative beaming angles of GRB emission and afterglow
emission at about 1-5 hrs after the GRB.Comment: 3 pages A&A style, 1 color ps-figure; To appear in A&A Suppl. Series,
Proc. of Rome 1998 GRB workshop, also available from
http://www.aip.de/~jcg/publis.htm
Fluid machines: Expanding the limits, past and future
During the 40 yr period from 1940 to 1980, the capabilities and operating limits of fluid machines were greatly extended. This was due to a research program, carried out to meet the needs of aerospace programs. Some of the events are reviewed. Overall advancements of all machinery components are discussed followed by a detailed examination of technology advancements in axial compressors and pumps. Future technology needs are suggested
Scaling behavior of interactions in a modular quantum system and the existence of local temperature
We consider a quantum system of fixed size consisting of a regular chain of
-level subsystems, where is finite. Forming groups of subsystems
each, we show that the strength of interaction between the groups scales with
. As a consequence, if the total system is in a thermal state with
inverse temperature , a sufficient condition for subgroups of size
to be approximately in a thermal state with the same temperature is , where is the width of the occupied
level spectrum of the total system. These scaling properties indicate on what
scale local temperatures may be meaningfully defined as intensive variables.
This question is particularly relevant for non-equilibrium scenarios such as
heat conduction etc.Comment: 7 pages, accepted for publication in Europhysics Letter
The Production of Ti44 and Co60 in Supernova
The production of the radioactive isotopes Ti and Co in all
types of supernovae is examined and compared to observational constraints
including Galactic --ray surveys, measurements of the diffuse 511 keV
radiation, --ray observations of Cas A, the late time light curve of SN
1987A, and isotopic anomalies found in silicon carbide grains in meteorites.
The (revised) line flux from Ti decay in the Cas A supernova remnant
reported by COMPTEL on the Compton Gamma-Ray Observatory is near the upper
bound expected from our models. The necessary concurrent ejection of Ni
would also imply that Cas A was a brighter supernova than previously thought
unless extinction in the intervening matter was very large. Thus, if confirmed,
the reported amount of Ti in Cas A provides very interesting constraints
on both the supernova environment and its mechanism. The abundances of
Ti and Co ejected by Type II supernovae are such that
gamma-radiation from Ti decay SN 1987A could be detected by a future
generation of gamma-ray telescopes and that the decay of Co might
provide an interesting contribution to the late time light curve of SN 1987A
and other Type II supernovae. To produce the solar Ca abundance and
satisfy all the observational constraints, nature may prefer at least the
occasional explosion of sub-Chandrasekhar mass white dwarfs as Type Ia
supernovae. Depending on the escape fraction of positrons due to Co made
in all kinds of Type Ia supernovae, a significant fraction of the steady state
diffuse 511 keV emission may arise from the annihilation of positrons produced
during the decay of Ti to Ca. The Ca and Ti isotopic anomalies in
pre-solar grains confirm the production of Ti in supernovae and thatComment: 27 pages including 7 figures. uuencoded, compressed, postscript. in
press Ap
Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts
While many models have been proposed for GRBs, those currently favored are
all based upon the formation of and/or rapid accretion into stellar mass black
holes. We present population synthesis calculations of these models using a
Monte Carlo approach in which the many uncertain parameters intrinsic to such
calculations are varied. We estimate the event rate for each class of model as
well as the propagation distance for those having significant delay between
formation and burst production, i.e., double neutron star (DNS) mergers and
black hole-neutron star (BH/NS) mergers. For reasonable assumptions regarding
the many uncertainties in population synthesis, we calculate a daily event rate
in the universe for i) merging neutron stars: ~100/day; ii) neutron-star black
hole mergers: ~450/day; iii) collapsars: ~10,000/day; iv) helium star black
hole mergers: ~1000/day; and v) white dwarf black hole mergers: ~20/day. The
range of uncertainty in these numbers however, is very large, typically two to
three orders of magnitude. These rates must additionally be multiplied by any
relevant beaming factor and sampling fraction (if the entire universal set of
models is not being observed). Depending upon the mass of the host galaxy, half
of the DNS and BH/NS mergers will happen within 60kpc (for a Milky-Way massed
galaxy) to 5Mpc (for a galaxy with negligible mass) from the galactic center.
Because of the delay time, neutron star and black hole mergers will happen at a
redshift 0.5 to 0.8 times that of the other classes of models. Information is
still lacking regarding the hosts of short hard bursts, but we suggest that
they are due to DNS and BH/NS mergers and thus will ultimately be determined to
lie outside of galaxies and at a closer mean distance than long complex bursts
(which we attribute to collapsars).Comment: 57 pages total, 23 figures, submitted by Ap
The use of pure carbon for permanent percutaneous electrical connector systems
Pure carbon was used as an electrode in the clinical application of long-term neuromuscular stimulation, as well as a connector for permanent neuroelectrodes. The history of this material and some examples of the material in use are presented
RNA secondary structure design
We consider the inverse-folding problem for RNA secondary structures: for a
given (pseudo-knot-free) secondary structure find a sequence that has that
structure as its ground state. If such a sequence exists, the structure is
called designable. We implemented a branch-and-bound algorithm that is able to
do an exhaustive search within the sequence space, i.e., gives an exact answer
whether such a sequence exists. The bound required by the branch-and-bound
algorithm are calculated by a dynamic programming algorithm. We consider
different alphabet sizes and an ensemble of random structures, which we want to
design. We find that for two letters almost none of these structures are
designable. The designability improves for the three-letter case, but still a
significant fraction of structures is undesignable. This changes when we look
at the natural four-letter case with two pairs of complementary bases:
undesignable structures are the exception, although they still exist. Finally,
we also study the relation between designability and the algorithmic complexity
of the branch-and-bound algorithm. Within the ensemble of structures, a high
average degree of undesignability is correlated to a long time to prove that a
given structure is (un-)designable. In the four-letter case, where the
designability is high everywhere, the algorithmic complexity is highest in the
region of naturally occurring RNA.Comment: 11 pages, 10 figure
- …