3,171 research outputs found

    Solute transport in a heterogeneous aquifer: a search for nonlinear deterministic dynamics

    No full text
    International audienceThe potential use of a nonlinear deterministic framework for understanding the dynamic nature of solute transport processes in subsurface formations is investigated. Time series of solute particle transport in a heterogeneous aquifer medium, simulated using an integrated probability/Markov chain (TP/MC) model, groundwater flow model, and particle transport model, are studied. The correlation dimension method, a popular nonlinear time series analysis technique, is used to identify nonlinear determinism. Sensitivity of the solute transport dynamics to the four hydrostratigraphic parameters involved in the TP/MC model: (1) number of facies; (2) volume proportions of facies; (3) mean lengths (and thereby anisotropy ratio of mean length) of facies; and (4) juxtapositional tendencies (i.e. degree of entropy) among the facies is also studied. The western San Joaquin Valley aquifer system in California is considered as a reference system. The results indicate, in general, the nonlinear deterministic nature of solute transport dynamics (dominantly governed by only a very few variables, on the order of 3), even though more complex behavior is possible under certain (extreme) hydrostratigraphic conditions. The sensitivity analysis reveals: (1) the importance of the hydrostratigraphic parameters (in particular, volume proportions of facies and mean lengths) in representing aquifer heterogeneity; and (2) the ability of the correlation dimension method in capturing the (extent of) complexity of the underlying dynamics. Verification and confirmation of the present results through use of other nonlinear deterministic techniques and assessment of their reliability for a wide range of solute transport scenarios are recommended

    Architecture of coatomer: Molecular characterization of delta-COP and protein interactions within the complex

    Get PDF
    Copyright © 2011 by The Rockefeller University Press.Coatomer is a cytosolic protein complex that forms the coat of COP I-coated transport vesicles. In our attempt to analyze the physical and functional interactions between its seven subunits (coat proteins, [COPs] alpha-zeta), we engaged in a program to clone and characterize the individual coatomer subunits. We have now cloned, sequenced, and overexpressed bovine alpha-COP, the 135-kD subunit of coatomer as well as delta-COP, the 57-kD subunit and have identified a yeast homolog of delta-COP by cDNA sequence comparison and by NH2-terminal peptide sequencing. delta-COP shows homologies to subunits of the clathrin adaptor complexes AP1 and AP2. We show that in Golgi-enriched membrane fractions, the protein is predominantly found in COP I-coated transport vesicles and in the budding regions of the Golgi membranes. A knock-out of the delta-COP gene in yeast is lethal. Immunoprecipitation, as well as analysis exploiting the two-hybrid system in a complete COP screen, showed physical interactions between alpha- and epsilon-COPs and between beta- and delta-COPs. Moreover, the two-hybrid system indicates interactions between gamma- and zeta-COPs as well as between alpha- and beta' COPs. We propose that these interactions reflect in vivo associations of those subunits and thus play a functional role in the assembly of coatomer and/or serve to maintain the molecular architecture of the complex.This work was supported by The Deutsche Forschungsgemeinschaft (SFB 352), the Human Frontier Science Program, and the Swiss National Science Foundation No. 31-43366.95

    Antiferromagnetic correlations and impurity broadening of NMR linewidths in cuprate superconductors

    Full text link
    We study a model of a d-wave superconductor with strong potential scatterers in the presence of antiferromagnetic correlations and apply it to experimental nuclear magnetic resonance (NMR) results on Zn impurities in the superconducting state of YBCO. We then focus on the contribution of impurity-induced paramagnetic moments, with Hubbard correlations in the host system accounted for in Hartree approximation. We show that local magnetism around individual impurities broadens the line, but quasiparticle interference between impurity states plays an important role in smearing out impurity satellite peaks. The model, together with estimates of vortex lattice effects, provides a semi-quantitative description of the impurity concentration dependence of the NMR line shape in the superconducting state, and gives a qualitative description of the temperature dependence of the line asymmetry. We argue that impurity-induced paramagnetism and resonant local density of states effects are both necessary to explain existing experiments.Comment: 15 pages, 23 figures, submitted to Phys. Rev.

    ‘My favourite things to do’ and ‘my favourite people’: Exploring salient aspects of children’s self-concept

    Get PDF
    This study explores the potential of the ‘draw-and-write’ method for inviting children to communicate salient aspects of their self-concept. Irish primary school children aged 10–13 years drew and wrote about their favourite people and things to do (social and active self). Children drew and described many salient activities (39 in total) and people – including pets. Results suggest that widely used, adult-constructed self-esteem scales for children, while multidimensional, are limited, and that ‘draw-and-write’ is an effective multimodal method with which children can express their social and active self-concepts

    Nonlinear and time-resolved optical study of the 112-type iron-based superconductor parent Ca_(1−x)La_xFeAs_2 across its structural phase transition

    Get PDF
    The newly discovered 112-type ferropnictide superconductors contain chains of As atoms that break the tetragonal symmetry between the É‘ and b axes. This feature eliminates the need for uniaxial strain that is usually required to stabilize large single domains in the electronic nematic state that exists in the vicinity of magnetic order in the iron-based superconductors. We report detailed structural symmetry measurements of 112-type Ca_(0.73)La_(0.27)FeAs_2 using rotational anisotropy optical second-harmonic generation. This technique is complementary to diffraction experiments and enables a precise determination of the point-group symmetry of a crystal. By combining our measurements with density functional theory calculations, we uncover a strong optical second-harmonic response of bulk electric dipole origin from the Fe and Ca 3d-derived states that enables us to assign C_2 as the crystallographic point group. This makes the 112-type materials high-temperature superconductors without a center of inversion, allowing for the possible mixing of singlet and triplet Cooper pairs in the superconducting state. We also perform pump-probe transient reflectivity experiments that reveal a 4.6-THz phonon mode associated with the out-of-plane motion of As atoms in the FeAs layers. We do not observe any suppression of the optical second-harmonic response or shift in the phonon frequency upon cooling through the reported monoclinic-to-triclinic transition at 58 K. This allows us to identify C_1 as the low-temperature crystallographic point group but suggests that structural changes induced by long-range magnetic order are subtle and do not significantly affect electronic states near the Fermi level

    Tetrahedral Symmetry in Ground- and Low-Lying States of Exotic A ~ 110 Nuclei

    Full text link
    Recent theoretical calculations predict a possible existence of nuclei with tetrahedral symmetry: more precisely, the mean-field hamiltonians of such nuclei are symmetric with respect to double point-group Td. In this paper, we focus on the neutron-rich Zirconium isotopes as an example and present realistic mean-field calculations which predict tetrahedral ground-state configurations in 108,110Zr and low-lying excited states of tetrahedral symmetry in a number of N > 66 isotopes. The motivations for focusing on these nuclei, as well as a discussion of the possible experimental signatures of tetrahedral symmetry are also presented.Comment: Accepted in Phys. Rev. C - Rapid Communication
    • …
    corecore