668 research outputs found
313 Can patient-reported health-related quality of life predict survival in cystic fibrosis?
Monthly newsletter of the BU Medical Campu
Eosinophil Apoptosis and Clearance in Asthma
Peer reviewedPublisher PD
Underwater hearing in sea snakes (Hydrophiinae): first evidence of auditory evoked potential thresholds
The viviparous sea snakes (Hydrophiinae) are a secondarily aquatic radiation of more than 60 species that possess many phenotypic adaptations to marine life. However, virtually nothing is known of the role and sensitivity of hearing in sea snakes. This study investigated the hearing sensitivity of the fully marine sea snake Hydrophis stokesii by measuring auditory evoked potential (AEP) audiograms for two individuals. AEPs were recorded from 40 Hz (the lowest frequency tested) up to 600 Hz, with a peak in sensitivity identified at 60 Hz (163.5 dB re. 1 µPa or 123 dB re. 1 µm s⁻²). Our data suggest that sea snakes are sensitive to low-frequency sounds but have relatively low sensitivity compared with bony fishes and marine turtles. Additional studies are required to understand the role of sound in sea snake life history and further assess these species' vulnerability to anthropogenic noise.Lucille Chapuis, Caroline C. Kerr, Shaun P. Collin, Nathan S. Hart and Kate L. Sander
The effect of underwater sounds on shark behaviour
The effect of sound on the behaviour of sharks has not been investigated since the 1970s. Sound is, however, an important sensory stimulus underwater, as it can spread in all directions quickly and propagate further than any other sensory cue. We used a baited underwater camera rig to record the behavioural responses of eight species of sharks (seven reef and coastal shark species and the white shark, Carcharodon carcharias) to the playback of two distinct sound stimuli in the wild: an orca call sequence and an artificially generated sound. When sounds were playing, reef and coastal sharks were less numerous in the area, were responsible for fewer interactions with the baited test rigs, and displayed less ‘inquisitive’ behaviour, compared to during silent control trials. White sharks spent less time around the baited camera rig when the artificial sound was presented, but showed no significant difference in behaviour in response to orca calls. The use of the presented acoustic stimuli alone is not an effective deterrent for C. carcharias. The behavioural response of reef sharks to sound raises concern about the effects of anthropogenic noise on these taxa
Ontogenetic shifts in brain scaling reflect behavioral changes in the life cycle of the pouched lamprey Geotria australis
Very few studies have described brain scaling in vertebrates throughout ontogeny and none in lampreys, one of the two surviving groups of the early agnathan (jawless) stage in vertebrate evolution. The life cycle of anadromous parasitic lampreys comprises two divergent trophic phases, firstly filter-feeding as larvae in freshwater and secondly parasitism as adults in the sea, with the transition marked by a radical metamorphosis. We characterized the growth of the brain during the life cycle of the pouched lamprey Geotria australis, an anadromous parasitic lamprey, focusing on the scaling between brain and body during ontogeny and testing the hypothesis that the vast transitions in behavior and environment are reflected in differences in the scaling and relative size of the major brain subdivisions throughout life. The body and brain mass and the volume of six brain structures of G. australis, representing six points of the life cycle, were recorded, ranging from the early larval stage to the final stage of spawning and death. Brain mass does not increase linearly with body mass during the ontogeny of G. australis. During metamorphosis, brain mass increases markedly, even though the body mass does not increase, reflecting an overall growth of the brain, with particularly large increases in the volume of the optic tectum and other visual areas of the brain and, to a lesser extent, the olfactory bulbs. These results are consistent with the conclusions that ammocoetes rely predominantly on non-visual and chemosensory signals, while adults rely on both visual and olfactory cues
Heavy Quark Free Energies and Screening in SU(2) Gauge Theory
We investigate the singlet, triplet and colour average heavy quark free
energies in SU(2) pure gauge theory at various temperatures T. We focus on the
long distance behaviour of the free energies, studying in particular the
temperature dependence of the string tension and the screening masses. The
results are qualitatively similar to the SU(3) scenario, except near the
critical temperature Tc of the deconfining transition. Finally we test a
recently proposed method to renormalize the Polyakov loop.Comment: 5 pages, 4 figures, contribution to the Proceedings of SEWM 2002
(Heidelberg
The QCD thermal phase transition in the presence of a small chemical potential
We propose a new method to investigate the thermal properties of QCD with a
small quark chemical potential . Derivatives of the phase transition point
with respect to are computed at for 2 flavors of p-4 improved
staggered fermions with on a lattice. The resulting
Taylor expansion is well behaved for the small values of relevant for RHIC phenomenology, and predicts a critical curve
in reasonable agreement with estimates obtained using exact
reweighting. In addition, we contrast the case of isoscalar and isovector
chemical potentials, quantify the effect of on the equation of
state, and comment on the complex phase of the fermion determinant in QCD with
.Comment: 26 pages, 25 figures, minor modificatio
- …