794 research outputs found

    The quantitative soil pit method for measuring belowground carbon and nitrogen stocks

    Get PDF
    Many important questions in ecosystem science require estimates of stocks of soil C and nutrients. Quantitative soil pits provide direct measurements of total soil mass and elemental content in depth-based samples representative of large volumes, bypassing potential errors associated with independently measuring soil bulk density, rock volume, and elemental concentrations. The method also allows relatively unbiased sampling of other belowground C and nutrient stocks, including roots, coarse organic fragments, and rocks. We present a comprehensive methodology for sampling these pools with quantitative pits and assess their accuracy, precision, effort, and sampling intensity as compared to other methods. At 14 forested sites in New Hampshire, nonsoil belowground pools (which other methods may omit, double-count, or undercount) accounted for upward of 25% of total belowground C and N stocks: coarse material accounted for 4 and 1% of C and N in the O horizon; roots were 11 and 4% of C and N in the O horizon and 10 and 3% of C and N in the B horizon; and soil adhering to rocks represented 5% of total B-horizon C and N. The top 50 cm of the C horizon contained the equivalent of 17% of B-horizon carbon and N. Sampling procedures should be carefully designed to avoid treating these important pools inconsistently. Quantitative soil pits have fewer sources of systematic error than coring methods; the main disadvantage is that because they are time-consuming and create a larger zone of disturbance, fewer observations can be made than with cores

    STAT1 activation in association with JAK2 exon 12 mutations

    Get PDF
    La inclusión de la perspectiva de género en la actividad jurisdiccional es una demanda sostenida de los colectivos feministas y de mujeres, dado que las sentencias tienen un poder performativo y envían un mensaje a la sociedad: “[…] tienen un poder individual y colectivo que impactan en la vida de las personas y conforman la identidad del poder judicial como un actor imprescindible en la construcción de un Estado democrático de derecho” (Suprema Corte de Justicia de la Nación, 2013:7). La incorporación de la perspectiva de género viene a garantizar la igualdad de posiciones (Kessler, 2014) entre mujeres y varones como una meta, trascendiendo la mera igualdad de oportunidades que hasta el presente se ha demostrado insuficiente para que las mujeres consigamos una ciudadanía plena. Al momento de incorporar la perspectiva de género en las sentencias, quienes juzgan deben tener presente en primer lugar, el impacto diferenciado de las normas en base al sexo de las personas. En segundo lugar, la interpretación y aplicación de las leyes en relación con (y en base a) estereotipos de género. Si, por ejemplo, quienes imparten justicia no tienen presentes los estereotipos de género vigentes detrás de las violaciones a los derechos humanos de las mujeres, si no los detectan ni cuestionan, entonces los reproducen. Tal como sostiene Scott (1996) el género es una categoría imprescindible para el análisis social. En tercer lugar, al momento del juzgamiento, se deben tener en cuenta las exclusiones legitimadas por la ley por pensar el mundo en términos binarios y androcéntricos; en cuarto lugar, la distribución no equitativa de recursos y poder que opera entre varones y mujeres en el marco de una organización social patriarcal, y, por último, el trato diferenciado por género legitimado por las propias leyes.Eje 3: Tramas violentas y espacios de exclusión.Instituto de Cultura Jurídic

    The association between dietary macronutrient intake and fibrogen growth factor 21 in a sample of White UK adults with elevated cardiometabolic risk markers

    Get PDF
    Increased levels of Fibrogen growth factor 21 (FGF21) is an emerging risk marker for cardiometabolic (CM) disease(1). Little detail is known about the impact of the human diet on FGF21 levels. The aim of this investigation was to assess potential associations between mean daily dietary macronutrient intake and FGF21 levels in a sample of 10 healthy normal-weight and overweight Caucasian adults aged 32–60 (80 % male) at increased CM risk(2). This pilot study received ethical approval from Liverpool John Moores University Research Ethics Committee (16/ELS/029) and was registered with ClinicalTrials.gov (Ref. NCT03257085). Participants were randomly allocated to one of two groups and asked to either consume 50 % energy from CHO for a duration of 8 weeks. Blood plasma samples were col- lected at baseline (BL), interim point (IP) and endpoint (EP) after a 12-hour overnight fast, immediately processed and frozen at −80°C. Thawed plasma samples were analysed via Quantikine® enzyme-linked immunosorbent assay (ELISA) (R&D Systems) for FGF21 levels. Two-way mixed ANOVA and Pearson’s partial correlation adjusted for estimated weekly moderate and vigorous activity was undertaken using IBM SPSS 24®. There were no effects for diet between groups or over time (data not shown). Significant correlations between macronutrient intakes and FGF21 levels were found for both groups at IP, but not at BL or EP. Moderate and significant positive correlations were found in the overall group for intake (g/d) for glucose (rpartial = ·699, p = ·04) and fructose (rpartial = ·686, p = ·04) and strong and significant positive correlations for non-milk extrinsic sugars (rpartial = ·742, p = ·02). Strong and significant positive correlations were also found in the LC group for glucose intake (g/d) (rpartial = ·980, p = ·02) and fructose (rpartial = ·967, p = ·03) and for protein (rpartial =·998, p=·002) after adjusting for physical activity. Mean carbohydrate intake (g/d) was 160·0 (s.d. 124·5) overall and 44·2 (s.d. 14·9) in the LC group at IP. Mean protein intake (g/d) was 113·2 (21·4) 130·0 (s.d. 15·9) overall and in the LC group at IP. Mean FGF21 levels were 179·9 pg/mL (s.d. 144·9) in the overall group and 94.4 pg/ML (s.d. 48.6) in the LC group at IP. %TE Intake (g/d) PROT FAT CHO GLU FRU NMES PROT FAT rrrrrrrrrrr −·214 ·623 ·635 −·326 −·491 ·448 ·699* ·686* ·742* −·606 −·496 ·143 ·637 ·937 ·427 −·059 ·722 ·980* ·967* ·919 ·998** −·080 Total kcal CHO NMES T LC CHO-Total carbohydrates, FAT-Total fat, FRU-Fructose, GLUC-Glucose, LC-low-carbohydrate, high-fat group, NMES-non-milk extrinsic sugars, PROT-protein, T – total, %TE – percentage total energy, *p < ·05 **p < ·005. In conclusion, low-carbohydrate diets provide the opportunity to assess responses to even small amounts of CHO, which are likely to be replaced in part by proteins. Despite low overall intakes of fructose and glucose in the LC group, strong and positive correlations with FGF21 levels were observed. The lower levels of FGF21 in the LC compared to the overall group are in line with findings that FGF21 levels are elevated with high-carbohydrate, low-protein diets with dietary fats having only minor impact(3). However, the majority of studies have still been undertaken using rodent models. The impact of dietary macronutrients on FGF21 levels as novel CMR marker in humans and the mechanism behind this relationship warrant further investigation. 1. Lakhani I, Gong M, Wong W et al. (2018) Metabolism 2018 Feb 1. pii: S0026-0495(18)30023-4. [Epub ahead of print]. 2. Jebb S, Lovegrove J, Griffin B et al. (2010) Am J Clin Nutr 92, 748–58. 3. Solon-Biet S, Cogger V, Pulpitel T et al. (2016) Cell Metab 24, 555–565

    Dietary carbohydrate intake, visceral adipose tissue and associated markers of cardiometabolic risk

    Get PDF
    Risk of cardiometabolic (CM) disease is characterised by elevated visceral adipose tissue (VAT) and a number of associated biomar- kers(1). Some dietary carbohydrates (CHO) have been found to contribute to VAT accumulation(2). Little is known about the impact of following a low-carbohydrate diet versus a high-carbohydrate diet on VAT, adiponectin (ADPN), leptin (LEPT) and leptin:adipo- nectin ratio (LAR). The aim of this investigation was to assess the impact of dietary carbohydrates (CHO) on VAT and emerging CM risk markers in a sample of 10 healthy normal-weight and overweight Caucasian adults aged 32–60 (80 % male) at increased CM risk(3). This pilot study received ethical approval from Liverpool John Moores University Research Ethics Committee (16/ELS/ 029) and was registered with ClinicalTrials.gov (Ref. NCT03257085). Participants were randomly allocated to one of two groups and asked to either consume 50 % energy from CHO (high-carb (HC)) for a duration of 8 weeks. VAT was ana- lysed via bioelectrical impedance (SECA mBCA 515). Blood plasma samples were collected at baseline (BL), interim point (IP) and endpoint (EP) after a 12-hour overnight fast, immediately processed and frozen at -80°C. Thawed plasma samples were analysed via immunoassay technology (Randox Evidence InvestigatorTM Metabolic Syndrome Arrays I and II) for ADPN and LEPT levels. Statistical analysis was undertaken using IBM SPSS 24®. Parametric data was analysed via two-way mixed ANOVA; non-parametric data was analysed via Mann-Whitney U test and Friedman test. Average daily carbohydrate intake in the LC group was 44·2 g at IP and 48·9 g at EP. There were no significant differences between groups at any time point for ADPN, LEPT, LAR or VAT and no significant inter- actions for time or group*time for ADPN, LEPT or LAR. However, in the LC group VAT decreased significantly between baseline and endpoint by 15 % (p = ·015) Over the course of the intervention ADPN and LEPT decreased non- significantly (by 4 % and 70 % respectively) in the LC group, whilst increasing non-significantly in the HC group (9 % and 65 % respectively). LAR increased in the HC group throughout the study, whilst LAR in the LC group decreased albeit not significantly. VAT (litre) ADPN (ng/mL) LEPT (ng/mL) LAR BL IP EP Median Median Median M SD M SD M SD BL IP EP BL IP EP BL IP EP LC 4·1a 1·2 3·8 1·3 3·5a 1·2 8·9 8·6 8·5 3·96 1·64 1·20 0·45 0·19 0·14 HC 2·7 0·1 1·6 0·3 2·5 0·1 11·3 13·4 12·3 0·97 1·1 1·60 0·07 0·07 0·46 ADPN = adiponectin, BL = baseline, EP = endpoint, HC = high-carbohydrate, moderate fat diet, IP = interim point, LAR = leptin:adiponectin ratio, LEPT = leptin, LC = low-carbohydrate, high-fat diet, VAT = visceral adipose tissue, ap = ·015. NB: interquartile ranges not provided for median values due to missing data. Higher LAR has been found to be a marker of increased CM risk(4). In conclusion, while the significant reduction in VAT in the LC group corresponds with the reduction of LAR further evidence is required to corroborate these findings. Previous evidence for LC is supportive for improved CM health from various biomarkers(5); LAR should be considered as a useful endocrine addition for future LC studies. 1. Krasimira A, Mozaffarian D & Pischon T (2018) Clin Chem 64, 142–153. 2. Rüttgers D, Fischer K, Koch M et al. (2015) Br J Nutr 114, 1929–1940. 3. Jebb S, Lovegrove J, Griffin B et al. (2010) Am J Clin Nutr 92, 748–58. 4. López-Jaramillo P, Gómez-Arbeláez D, López-López J et al. (2014) Horm Mol Biol Clin Investig 18, 37–45. 5. Bazzano L, Hi T, Reynolds K et al. (2014) Ann Intern Med 161, 309–318

    On the generalized linear equivalence of functions over finite fields

    Get PDF
    In this paper we introduce the concept of generalized linear equivalence between functions defined over finite fields; this can be seen as an extension of the classical criterion of linear equivalence, and it is obtained by means of a particular geometric representation of the functions. After giving the basic definitions, we prove that the known equivalence relations can be seen as particular cases of the proposed generalized relationship and that there exist functions that are generally linearly equivalent but are not such in the classical theory. We also prove that the distributions of values in the Difference Distribution Table (DDT) and in the Linear Approximation Table (LAT) are invariants of the new transformation; this gives us the possibility to find some Almost Perfect Nonlinear (APN) functions that are not linearly equivalent (in the classical sense) to power functions, and to treat them accordingly to the new formulation of the equivalence criterion

    Electroproduction and Hadroproduction of Light Gluinos

    Get PDF
    In a class of supergravity models, the gluino and photino are massless at tree level and receive small masses through radiative corrections. In such models, one expects a gluino-gluon bound state, the R0R_0, to have a mass of between 1.0 and 2.2 GeV and a lifetime between 101010^{-10} and 10610^{-6} seconds. Applying peturbative QCD methods (whose validity we discuss), we calculate the production cross sections of R0R_0's in epe-p, πp\pi-p, KpK-p, pp\overline{p}-p and ppp-p collisions. Signatures are also discussed.Comment: 10 pages, latex, 6 figures uuencoded, figures also available via anonymous ftp to ftp://physics.wm.edu/pub/gluinofig.p

    Perspectives on tracking data reuse across biodata resources.

    Get PDF
    Data reuse is a common and vital practice in molecular biology and enables the knowledge gathered over recent decades to drive discovery and innovation in the life sciences. Much of this knowledge has been collated into molecular biology databases, such as UniProtKB, and these resources derive enormous value from sharing data among themselves. However, quantifying and documenting this kind of data reuse remains a challenge. The article reports on a one-day virtual workshop hosted by the UniProt Consortium in March 2023, attended by representatives from biodata resources, experts in data management, and NIH program managers. Workshop discussions focused on strategies for tracking data reuse, best practices for reusing data, and the challenges associated with data reuse and tracking. Surveys and discussions showed that data reuse is widespread, but critical information for reproducibility is sometimes lacking. Challenges include costs of tracking data reuse, tensions between tracking data and open sharing, restrictive licenses, and difficulties in tracking commercial data use. Recommendations that emerged from the discussion include: development of standardized formats for documenting data reuse, education about the obstacles posed by restrictive licenses, and continued recognition by funding agencies that data management is a critical activity that requires dedicated resources. Summaries of survey results are available at: https://docs.google.com/forms/d/1j-VU2ifEKb9C-sW6l3ATB79dgHdRk5v_lESv2hawnso/viewanalytics (survey of data providers) and https://docs.google.com/forms/d/18WbJFutUd7qiZoEzbOytFYXSfWFT61hVce0vjvIwIjk/viewanalytics (survey of users)

    Human immunodeficiency virus, type 1 protease substrate specificity is limited by interactions between substrate amino acids bound in adjacent enzyme subsites

    Get PDF
    The specificity of the retroviral protease is determined by the ability of substrate amino acid side chains to bind into eight individual subsites within the enzyme. Although the subsites are able to act somewhat independently in selection of amino acid side chains that fit into each pocket, significant interactions exist between individual subsites that substantially limit the number of clearable amino acid sequences. The substrate peptide binds within the enzyme in an extended anti-parallel β sheet conformation with substrate amino acid side chains adjacent in the linear sequence extending in opposite directions in the enzyme-substrate complex. From this geometry, we have defined both cis and trans steric interactions, which have been characterized by a steady state kinetic analysis of human immunodeficiency virus, type-1 protease using a series of peptide substrates that are derivatives of the avian leukosis/sarcoma virus nucleocapsid-protease cleavage site. These peptides contain both single and double amino acid substitutions in seven positions of the minimum length substrate required by the retroviral protease for specific and efficient cleavage. Steady state kinetic data from the single amino acid substituted peptides were used to predict effects on protease-catalyzed cleavage of corresponding double substituted peptide substrates. The calculated Gibbs' free energy changes were compared with actual experimental values in order to determine how the fit of a substrate amino acid in one subsite influences the fit of amino acids in adjacent subsites. Analysis of these data shows that substrate specificity is limited by steric interactions between pairs of enzyme subsites. Moreover, certain enzyme subsites are relatively tolerant of substitutions in the substrate and exert little effect on adjacent subsites, whereas others are more restrictive and have marked influence on adjacent cis and trans subsites

    Neutrino Masses with "Zero Sum" Condition: mν1+mν2+mν3=0m_{\nu_1} + m_{\nu_2} + m_{\nu_3} = 0

    Full text link
    It is well known that the neutrino mass matrix contains more parameters than experimentalists can hope to measure in the foreseeable future even if we impose CP invariance. Thus, various authors have proposed ansatzes to restrict the form of the neutrino mass matrix further. Here we propose that mν1+mν2+mν3=0m_{\nu_1} + m_{\nu_2} + m_{\nu_3} = 0; this ``zero sum'' condition can occur in certain class of models, such as models whose neutrino mass matrix can be expressed as commutator of two matrices. With this condition, the absolute neutrino mass can be obtained in terms of the mass-squared differences. When combined with the accumulated experimental data this condition predicts two types of mass hierarchies, with one of them characterized by mν32mν12mν20.063m_{\nu_3} \approx -2m_{\nu_1} \approx -2 m_{\nu_2} \approx 0.063 eV, and the other by mν1mν20.054m_{\nu_1} \approx -m_{\nu_2} \approx 0.054 eV and mν30.0064m_{\nu_3} \approx 0.0064 eV. The mass ranges predicted is just below the cosmological upper bound of 0.23 eV from recent WMAP data and can be probed in the near future. We also point out some implications for direct laboratory measurement of neutrino masses, and the neutrino mass matrix.Comment: Latex 12 pages. No figures. New references adde

    Using the past to constrain the future: how the palaeorecord can improve estimates of global warming

    Full text link
    Climate sensitivity is defined as the change in global mean equilibrium temperature after a doubling of atmospheric CO2 concentration and provides a simple measure of global warming. An early estimate of climate sensitivity, 1.5-4.5{\deg}C, has changed little subsequently, including the latest assessment by the Intergovernmental Panel on Climate Change. The persistence of such large uncertainties in this simple measure casts doubt on our understanding of the mechanisms of climate change and our ability to predict the response of the climate system to future perturbations. This has motivated continued attempts to constrain the range with climate data, alone or in conjunction with models. The majority of studies use data from the instrumental period (post-1850) but recent work has made use of information about the large climate changes experienced in the geological past. In this review, we first outline approaches that estimate climate sensitivity using instrumental climate observations and then summarise attempts to use the record of climate change on geological timescales. We examine the limitations of these studies and suggest ways in which the power of the palaeoclimate record could be better used to reduce uncertainties in our predictions of climate sensitivity.Comment: The final, definitive version of this paper has been published in Progress in Physical Geography, 31(5), 2007 by SAGE Publications Ltd, All rights reserved. \c{opyright} 2007 Edwards, Crucifix and Harriso
    corecore