2,747 research outputs found

    The Burst and Transient Source Experiment Earth Occultation Technique

    Get PDF
    An Earth orbiting detector sensitive to gamma ray photons will see step-like occultation features in its counting rate when a gamma ray point source crosses the Earth's limb. This is due to the change in atmospheric attenuation of the gamma rays along the line of sight. In an uncollimated detector, these occultation features can be used to locate and monitor astrophysical sources provided their signals can be individually separated from the detector background. We show that the Earth occultation technique applied to the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) is a viable and flexible all-sky monitor in the low energy gamma ray and hard X-ray energy range (20 keV - 1 MeV). The method is an alternative to more sophisticated photon imaging devices for astronomy, and can serve well as a cost-effective science capability for monitoring the high energy sky. Here we describe the Earth occultation technique for locating new sources and for measuring source intensity and spectra without the use of complex background models. Examples of transform imaging, step searches, spectra, and light curves are presented. Systematic uncertainties due to source confusion, detector response, and contamination from rapid background fluctuations are discussed and analyzed for their effect on intensity measurements. A sky location-dependent average systematic error is derived as a function of galactic coordinates. The sensitivity of the technique is derived as a function of incident photon energy and also as a function of angle between the source and the normal to the detector entrance window. Occultations of the Crab Nebula by the Moon are used to calibrate Earth occultation flux measurements independent of possible atmospheric scattering effects.Comment: 39 pages, 24 figures. Accepted for publication in the Astrophysical Journal Supplement

    Monte-Carlo simulations of thermal/nonthermal radiation from a neutron-star magnetospheric accretion shell

    Full text link
    We discuss the space-and-time-dependent Monte Carlo code we have developed to simulate the relativistic radiation output from compact astrophysical objects, coupled to a Fokker-Planck code to determine the self-consistent lepton populations. We have applied this code to model the emission from a magnetized neutron star accretion shell near the Alfven radius, reprocessing the radiation from the neutron sar surface. We explore the parameter space defined by the accretion rate, stellar surface field and the level of wave turbulence in the shell. Our results are relevant to the emission from atoll sources, soft-X-ray transient X-ray binaries containing weakly magnetized neutron stars, and to recently suggested models of accretion-powered emission from anomalous X-ray pulsars.Comment: 24 pages, including 7 figures; uses epsf.sty. final version, accepted for publication in ApJ. Extended introduction and discussio

    The unusual volatile composition of the Halley-type comet 8P/Tuttle: Addressing the existence of an Inner Oort Cloud

    Full text link
    We measured organic volatiles (CH4, CH3OH, C2H6, H2CO), CO, and water in comet 8P/Tuttle, a comet from the Oort cloud reservoir now in a short-period Halley-type orbit. We compare its composition with two other comets in Halley-type orbits, and with comets of the "organics-normal" and "organics-depleted" classes. Chemical gradients are expected in the comet-forming region of the proto-planetary disk, and an individual comet should reflect its specific heritage. If Halley-type comets came from the inner Oort cloud as proposed, we see no common characteristics that could distinguish such comets from those that were stored in the outer Oort cloud.Comment: 14 pages, including 1 figure and 2 Table

    Neel state of antiferromagnet as a result of a local measurement in the distributed quantum system

    Get PDF
    Single-site measurement in a distributed macroscopic antiferromagnet is considered; we show that it can create antiferromagnetic sublattices at macroscopic scale. We demonstrate that the result of measurement depends on the symmetry of the ground state: for the easy-axis case the Neel state is formed, while for the easy-plane case unusual ``fan'' sublattices appear with unbroken rotational symmetry, and a decoherence wave is generated. For the latter case, a macroscopically large number of measurements is needed to pin down the orientation of the sublattices, in spite of the high degeneracy of the ground state. We note that the type of the final state and the appearance of the decoherence wave are governed by the degree of entanglement of spins in the system.Comment: 4 REVTeX pages, 1 figure in PostScrip

    Correlation Between BATSE Hard X-ray Spectral and Timing Properties of Cygnus X-1

    Get PDF
    We have analyzed approximately 1100 days of Cygnus X-1 hard X-ray data obtained with BATSE to study its rapid variability. We find for the first time correlations between the slope of the spectrum and the hard X-ray intensity, and between the spectral slope and the amplitude of the rapid variations of the hard X-ray flux. We compare our results with expectations from current theories of accretion onto black holes.Comment: 17 pages, 3 Postscript figures, uses aasms4.sty. Accepted for publication in Astrophysical Journal Letter

    Integrating ecology into macroevolutionary research

    Get PDF
    On 9 March, over 150 biologists gathered in London for the Centre for Ecology and Evolution spring symposium, ‘Integrating Ecology into Macroevolutionary Research’. The event brought together researchers from London-based institutions alongside others from across the UK, Europe and North America for a day of talks. The meeting highlighted methodological advances and recent analyses of exemplar datasets focusing on the exploration of the role of ecological processes in shaping macroevolutionary patterns

    The Burst and Transient Source Experiment (BATSE) Earth Occultation Catalog of Low-Energy Gamma-Ray Sources

    Full text link
    The Burst and Transient Source Experiment (BATSE), aboard the Compton Gamma Ray Observatory (CGRO), provided a record of the low-energy gamma-ray sky (20-1000 keV) between 1991 April and 2000 May (9.1y). Using the Earth Occultation Technique to extract flux information, a catalog of sources using data from the BATSE large area detectors has been prepared. The first part of the catalog consists of results from the monitoring of 58 sources, mostly Galactic. For these sources, we have included tables of flux and spectral data, and outburst times for transients. Light curves (or flux histories) have been placed on the world wide web. We then performed a deep-sampling of 179 objects (including the aforementioned 58 objects) combining data from the entire 9.1y BATSE dataset. Source types considered were primarily accreting binaries, but a small number of representative active galaxies, X-ray-emitting stars, and supernova remnants were also included. The deep sample results include definite detections of 83 objects and possible detections of 36 additional objects. The definite detections spanned three classes of sources: accreting black hole and neutron star binaries, active galaxies and supernova remnants. Flux data for the deep sample are presented in four energy bands: 20-40, 40-70, 70-160, and 160-430 keV. The limiting average flux level (9.1 y) for the sample varies from 3.5 to 20 mCrab (5 sigma) between 20 and 430 keV, depending on systematic error, which in turn is primarily dependent on the sky location. To strengthen the credibility of detection of weaker sources (5-25 mCrab), we generated Earth occultation images, searched for periodic behavior using FFT and epoch folding methods, and critically evaluated the energy-dependent emission in the four flux bands.Comment: 64 pages, 17 figures, abstract abridged, Accepted by ApJ

    The X-ray Cluster Dipole

    Get PDF
    We estimate the dipole of the whole sky X-ray flux-limited sample of Abell/ACO clusters (XBACs) and compare it to the optical Abell/ACO cluster dipole. The X-ray cluster dipole is well aligned (≀25∘\le 25^{\circ}) with the CMB dipole, while it follows closely the radial profile of its optical cluster counterpart although its amplitude is ∌10−30\sim 10 - 30 per cent lower. In view of the fact that the the XBACs sample is not affected by the volume incompleteness and the projection effects that are known to exist at some level in the optical parent Abell/ACO cluster catalogue, our present results confirm the previous optical cluster dipole analysis that there are significant contributions to the Local Group motion from large distances (∌160h−1\sim 160h^{-1} Mpc). In order to assess the expected contribution to the X-ray cluster dipole from a purely X-ray selected sample we compare the dipoles of the XBACs and the Brightest Cluster Sample (Ebeling et al. 1997a) in their overlap region. The resulting dipoles are in mutual good aggreement with an indication that the XBACs sample slightly underestimates the full X-ray dipole (by ≀5\le 5 per cent) while the Virgo cluster contributes about 10 - 15 per cent to the overall X-ray cluster dipole. Using linear perturbation theory to relate the X-ray cluster dipole to the Local group peculiar velocity we estimate the density parameter to be ÎČcx≃0.24±0.05\beta_{c_{x}} \simeq 0.24 \pm 0.05.Comment: 16 pages, latex, + 4 ps figures, submitted to Ap
    • 

    corecore