Single-site measurement in a distributed macroscopic antiferromagnet is
considered; we show that it can create antiferromagnetic sublattices at
macroscopic scale. We demonstrate that the result of measurement depends on the
symmetry of the ground state: for the easy-axis case the Neel state is formed,
while for the easy-plane case unusual ``fan'' sublattices appear with unbroken
rotational symmetry, and a decoherence wave is generated. For the latter case,
a macroscopically large number of measurements is needed to pin down the
orientation of the sublattices, in spite of the high degeneracy of the ground
state. We note that the type of the final state and the appearance of the
decoherence wave are governed by the degree of entanglement of spins in the
system.Comment: 4 REVTeX pages, 1 figure in PostScrip