37 research outputs found

    Thermal correction to the Casimir force, radiative heat transfer, and an experiment

    Full text link
    The low-temperature asymptotic expressions for the Casimir interaction between two real metals described by Leontovich surface impedance are obtained in the framework of thermal quantum field theory. It is shown that the Casimir entropy computed using the impedance of infrared optics vanishes in the limit of zero temperature. By contrast, the Casimir entropy computed using the impedance of the Drude model attains at zero temperature a positive value which depends on the parameters of a system, i.e., the Nernst heat theorem is violated. Thus, the impedance of infrared optics withstands the thermodynamic test, whereas the impedance of the Drude model does not. We also perform a phenomenological analysis of the thermal Casimir force and of the radiative heat transfer through a vacuum gap between real metal plates. The characterization of a metal by means of the Leontovich impedance of the Drude model is shown to be inconsistent with experiment at separations of a few hundred nanometers. A modification of the impedance of infrared optics is suggested taking into account relaxation processes. The power of radiative heat transfer predicted from this impedance is several times less than previous predictions due to different contributions from the transverse electric evanescent waves. The physical meaning of low frequencies in the Lifshitz formula is discussed. It is concluded that new measurements of radiative heat transfer are required to find out the adequate description of a metal in the theory of electromagnetic fluctuations.Comment: 19 pages, 4 figures. svjour.cls is used, to appear in Eur. Phys. J.

    Higher order conductivity corrections to the Casimir force

    Get PDF
    The finite conductivity corrections to the Casimir force in two configurations are calculated in the third and fourth orders in relative penetration depth of electromagnetic zero oscillations into the metal. The obtained analytical perturbation results are compared with recent computations. Applications to the modern experiments are discussed.Comment: 15 pages, 4 figure

    Simulação do risco de deficit hídrico em regiões de expansão do cultivo de cana-de-açúcar no Brasil

    Get PDF
    O objetivo deste trabalho foi determinar o risco de deficit hídrico para a cultura da cana-de-açúcar em diferentes regiões brasileiras, com foco nas áreas de expansão. Para tanto, utilizou-se o modelo CSM-Canegro, para simular a produtividade da cana-planta de 12 meses, em 30 localidades. A partir dos valores estimados de produtividades potencial e atingível (produtividade sem irrigação), definiram-se as classes de risco de deficit hídrico de acordo com os níveis de eficiência climática, dada pela razão entre essas produtividades. O modelo simulou o efeito dos diferentes tipos de solo e datas de plantio sobre a produtividade, o que possibilitou caracterizar o risco de deficit hídrico associado à cultura. A região de maior risco é Petrolina, PE, enquanto as regiões de menor risco são as similares a Recife, PE, e Araguaína, TO

    The HITRAN2020 Molecular Spectroscopic Database

    Get PDF
    The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition

    APSIM: A novel software system for model development, model testing and simulation in agricultural systems research

    No full text
    APSIM (Agricultural Production Systems Simulator) is a software system which allows (a) models of crop and pasture production, residue decomposition, soil water and nutrient flow, and erosion to be readily re-configured to simulate various production systems and (b) sail and crop management to be dynamically simulated using conditional rules. A key innovation is change from a core concept of a crop responding to resource supplies to that of a soil responding to weather, management and crops. While this achieves a sound logical structure for improved simulation of soil management and long-term change in the soil resource, it does so without loss of sensitivity in simulating crop yields. This concept is implemented using a program structure in which all modules (e.g. growth of specific craps, soil water, soil N, erosion) communicate with each other only by messages passed via a central 'engine'. Using a standard interface design, this design enables easy removal, replacement, or exchange of modules without disruption to the operation of the system. Simulation of crop sequences and multiple crops are achieved by managing connection of crop growth modules to the engine
    corecore