8,185 research outputs found

    N\'eel and Spin-Peierls ground states of two-dimensional SU(N) quantum antiferromagnets

    Get PDF
    The two-dimensional SU(N) quantum antiferromagnet, a generalization of the quantum Heisenberg model, is investigated by quantum Monte Carlo simulations. The ground state for N4N\le 4 is found to be of the N\'eel type with broken SU(N) symmetry, whereas it is of the Spin-Peierls type for N5N\ge 5 with broken lattice translational invariance. No intermediate spin-liquid phase was observed in contrast to previous numerical simulations on smaller lattices [Santoro et al., Phys. Rev. Lett. {\bf 83} 3065 (1999)].Comment: 4 pages, 4 figure

    Redox functionality mediated by adsorbed oxygen on a Pd-oxide film over a Pd(100) thin structure: A first-principles study

    Full text link
    Stable oxygen sites on a PdO film over a Pd(100) thin structures with a (sqrt{5} times sqrt{5}) R27^circ surface-unit cell are determined using the first-principles electronic structure calculations with the generalized gradient approximation. The adsorbed monatomic oxygen goes to a site bridging two 2-fold-coordinated Pd atoms or to a site bridging a 2-fold-coordinated Pd atom and a 4-fold-coordinated Pd atom. Estimated reaction energies of CO oxidation by reduction of the oxidized PdO film and N_2O reduction mediated by oxidation of the PdO film are exothermic. Motion of the adsorbed oxygen atom between the two stable sites is evaluated using the nudged elastic band method, where an energy barrier for a translational motion of the adsorbed oxygen may become sim 0.45 eV, which is low enough to allow fluxionality of the surface oxygen at high temperatures. The oxygen fluxionality is allowed by existence of 2-fold-coordinated Pd atoms on the PdO film, whose local structure has similarity to that of Pd catalysts for the Suzuki-Miyaura cross coupling. Although NO_x (including NO_2 and NO) reduction is not always catalyzed only by the PdO film, we conclude that there may happen continual redox reactions mediated by oxygen-adsorbed PdO films over a Pd surface structure, when the influx of NO_x and CO continues, and when the reaction cycle is kept on a well-designed oxygen surface.Comment: 15 pages, 6 figures, submitted to J. Phys. Condens. Matte

    Diffusion in the Continuous-Imaginary-Time Quantum World-Line Monte Carlo Simulations with Extended Ensembles

    Full text link
    The dynamics of samples in the continuous-imaginary-time quantum world-line Monte Carlo simulations with extended ensembles are investigated. In the case of a conventional flat ensemble on the one-dimensional quantum S=1 bi-quadratic model, the asymmetric behavior of Monte Carlo samples appears in the diffusion process in the space of the number of vertices. We prove that a local diffusivity is asymptotically proportional to the number of vertices, and we demonstrate the asymmetric behavior in the flat ensemble case. On the basis of the asymptotic form, we propose the weight of an optimal ensemble as 1/n1/\sqrt{n}, where nn denotes the number of vertices in a sample. It is shown that the asymmetric behavior completely vanishes in the case of the proposed ensemble on the one-dimensional quantum S=1 bi-quadratic model.Comment: 4 pages, 2 figures, update a referenc

    Physical aspects of naked singularity explosion - How does a naked singularity explode? --

    Get PDF
    The behaviors of quantum stress tensor for the scalar field on the classical background of spherical dust collapse is studied. In the previous works diverging flux of quantum radiation was predicted. We use the exact expressions in a 2D model formulated by Barve et al. Our present results show that the back reaction does not become important during the semiclassical phase. The appearance of the naked singularity would not be affected by this quantum field radiation. To predict whether the naked singularity explosion occurs or not we need the theory of quantum gravity. We depict the generation of the diverging flux inside the collapsing star. The quantum energy is gathered around the center positively. This would be converted to the diverging flux along the Cauchy horizon. The ingoing negative flux crosses the Cauchy horizon. The intensity of it is divergent only at the central naked singularity. This diverging negative ingoing flux is balanced with the outgoing positive diverging flux which propagates along the Cauchy horizon. After the replacement of the naked singularity to the practical high density region the instantaneous diverging radiation would change to more milder one with finite duration.Comment: 18 pages, 16 figure

    Amino acids precursors in lunar finds

    Get PDF
    The consistent pattern is discussed of amino acids found in lunar dust from Apollo missions. The evidence indicates that compounds yielding amino acids were implanted into the surface of the moon by the solar wind, and the kind and amounts of amino acids found on the moon are closely similar to those found in meteorites. It is concluded that there is a common cosmochemical pattern for the moom and meteorites, and this offers evidence of a common course of cosmochemical reactions for carbon

    Nonperturbative solution of the Nonconfining Schwinger Model with a generalized regularization

    Full text link
    Nonconfining Schwinger Model [AR] is studied with a one parameter class of kinetic energy like regularization. It may be thought of as a generalization over the regularization considered in [AR]. Phasespace structure has been determined in this new situation. The mass of the gauge boson acquires a generalized expression with the bare coupling constant and the parameters involved in the regularization. Deconfinement scenario has become transparent at the quark-antiquark potential level.Comment: 13 pages latex fil

    Finite-size Scaling of Correlation Ratio and Generalized Scheme for the Probability-Changing Cluster Algorithm

    Full text link
    We study the finite-size scaling (FSS) property of the correlation ratio, the ratio of the correlation functions with different distances. It is shown that the correlation ratio is a good estimator to determine the critical point of the second-order transition using the FSS analysis. The correlation ratio is especially useful for the analysis of the Kosterlitz-Thouless (KT) transition. We also present a generalized scheme of the probability-changing cluster algorithm, which has been recently developed by the present authors, based on the FSS property of the correlation ratio. We investigate the two-dimensional quantum XY model of spin 1/2 with this generalized scheme, obtaining the precise estimate of the KT transition temperature with less numerical effort.Comment: 4 pages, RevTeX4, to appear in Phys. Rev. B, Rapid Communication

    Quadrupolar Order in Isotropic Heisenberg Models with Biquadratic Interaction

    Get PDF
    Through Quantum Monte Carlo simulation, we study the biquadratic-interaction model with the SU(2) symmetry in two and three dimensions. The zero-temperature phase diagrams for the two cases are identical and exhibit an intermediate phase characterized by finite quadrupole moment, in agreement with mean-field type arguments and the semi-classical theory. In three dimensions, we demonstrate that the model in the quadrupolar regime has a phase transition at a finite temperature. In contrast to predictions by mean-field theories, the phase transition to the quadrupolar phase turns out to be of the second order. We also examine the critical behavior in the two marginal cases with the SU(3) symmetry.Comment: 4 pages 5 figure

    Mesons in the massive Schwinger model on the light-cone

    Full text link
    We investigate mesons in the bosonized massive Schwinger model in the light-front Tamm-Dancoff approximation in the strong coupling region. We confirm that the three-meson bound state has a few percent fermion six-body component in the strong coupling region when expressed in terms of fermion variables, consistent with our previous calculations. We also discuss some qualitative features of the three-meson bound state based on the information about the wave function.Comment: 19 pages, RevTex, included 6 figures which are compressed and uuencode

    Recent Developments of World-Line Monte Carlo Methods

    Full text link
    World-line quantum Monte Carlo methods are reviewed with an emphasis on breakthroughs made in recent years. In particular, three algorithms -- the loop algorithm, the worm algorithm, and the directed-loop algorithm -- for updating world-line configurations are presented in a unified perspective. Detailed descriptions of the algorithms in specific cases are also given.Comment: To appear in Journal of Physical Society of Japa
    corecore