research

Diffusion in the Continuous-Imaginary-Time Quantum World-Line Monte Carlo Simulations with Extended Ensembles

Abstract

The dynamics of samples in the continuous-imaginary-time quantum world-line Monte Carlo simulations with extended ensembles are investigated. In the case of a conventional flat ensemble on the one-dimensional quantum S=1 bi-quadratic model, the asymmetric behavior of Monte Carlo samples appears in the diffusion process in the space of the number of vertices. We prove that a local diffusivity is asymptotically proportional to the number of vertices, and we demonstrate the asymmetric behavior in the flat ensemble case. On the basis of the asymptotic form, we propose the weight of an optimal ensemble as 1/n1/\sqrt{n}, where nn denotes the number of vertices in a sample. It is shown that the asymmetric behavior completely vanishes in the case of the proposed ensemble on the one-dimensional quantum S=1 bi-quadratic model.Comment: 4 pages, 2 figures, update a referenc

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020