77 research outputs found

    Hypofractionated Stereotactic Radiotherapy (HypoFXSRT) for Stage I Non-small Cell Lung Cancer: Updated Results of 257 Patients in a Japanese Multi-institutional Study

    Get PDF
    IntroductionHypofractionated stereotactic radiotherapy (HypoFXSRT) has recently been used for the treatment of small lung tumors. We retrospectively analyzed the treatment outcome of HypoFXSRT for stage I non-small cell lung cancer (NSCLC) treated in a Japanese multi-institutional study.MethodsThis is a retrospective study to review 257 patients with stage I NSCLC (median age, 74 years: 164 T1N0M0, 93 T2N0M0) were treated with HypoFXSRT alone at 14 institutions. Stereotactic three-dimensional treatment was performed using noncoplanar dynamic arcs or multiple static ports. A total dose of 18 to 75 Gy at the isocenter was administered in one to 22 fractions. The median calculated biological effective dose (BED) was 111 Gy (range, 57–180 Gy) based on α/β = 10.ResultsDuring follow-up (median, 38 months), pulmonary complications of above grade 2 arose in 14 patients (5.4%). Local progression occurred in 36 patients (14.0%), and the local recurrence rate was 8.4% for a BED of 100 Gy or more compared with 42.9% for less than 100 Gy (p< 0.001). The 5-year overall survival rate of medically operable patients was 70.8% among those treated with a BED of 100 Gy or more compared with 30.2% among those treated with less than 100 Gy (p< 0.05).ConclusionsAlthough this is a retrospective study, HypoFXSRT with a BED of less than 180 Gy was almost safe for stage I NSCLC, and the local control and overall survival rates in 5 years with a BED of 100 Gy or more were superior to the reported results for conventional radiotherapy. For all treatment methods and schedules, the local control and survival rates were better with a BED of 100 Gy or more compared with less than 100 Gy. HypoFXSRT is feasible for curative treatment of patients with stage I NSCLC

    Single-cell transcriptomics of human cholesteatoma identifies an activin A-producing osteoclastogenic fibroblast subset inducing bone destruction

    Get PDF
    Cholesteatoma, which potentially results from tympanic membrane retraction, is characterized by intractable local bone erosion and subsequent hearing loss and brain abscess formation. However, the pathophysiological mechanisms underlying bone destruction remain elusive. Here, we performed a single-cell RNA sequencing analysis on human cholesteatoma samples and identify a pathogenic fibroblast subset characterized by abundant expression of inhibin βA. We demonstrate that activin A, a homodimer of inhibin βA, promotes osteoclast differentiation. Furthermore, the deletion of inhibin βA /activin A in these fibroblasts results in decreased osteoclast differentiation in a murine model of cholesteatoma. Moreover, follistatin, an antagonist of activin A, reduces osteoclastogenesis and resultant bone erosion in cholesteatoma. Collectively, these findings indicate that unique activin A-producing fibroblasts present in human cholesteatoma tissues are accountable for bone destruction via the induction of local osteoclastogenesis, suggesting a potential therapeutic target.Shimizu K., Kikuta J., Ohta Y., et al. Single-cell transcriptomics of human cholesteatoma identifies an activin A-producing osteoclastogenic fibroblast subset inducing bone destruction. Nature Communications 14, 4417 (2023); https://doi.org/10.1038/s41467-023-40094-3

    Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening

    Get PDF
    Growth of petal cells is a basis for expansion and morphogenesis (outward bending) of petals during opening of carnation flowers (Dianthus caryophyllus L.). Petal growth progressed through elongation in the early stage, expansion with outward bending in the middle stage, and expansion of the whole area in the late stage of flower opening. In the present study, four cDNAs encoding xyloglucan endotransglucosylase/hydrolase (XTH) (DcXTH1–DcXTH4) and three cDNAs encoding expansin (DcEXPA1–DcEXPA3) were cloned from petals of opening carnation flowers and characterized. Real-time reverse transcription-PCR analyses showed that transcript levels of XTH and expansin genes accumulated differently in floral and vegetative tissues of carnation plants with opening flowers, indicating regulated expression of these genes. DcXTH2 and DcXTH3 transcripts were detected in large quantities in petals as compared with other tissues. DcEXPA1 and DcEXPA2 transcripts were markedly accumulated in petals of opening flowers. The action of XTH in growing petal tissues was confirmed by in situ staining of xyloglucan endotransglucosylase (XET) activity using a rhodamine-labelled xyloglucan nonasaccharide as a substrate. Based on the present findings, it is suggested that two XTH genes (DcXTH2 and DcXTH3) and two expansin genes (DcEXPA1 and DcEXPA2) are associated with petal growth and development during carnation flower opening

    Female Reproductive Events and Subclinical Atherosclerosis of the Brain and Carotid Arteriopathy: the Ohasama Study

    Get PDF
    Aims: Few studies have investigated the subclinical atherosclerotic changes in the brain and carotid artery, and in East Asian populations. We sought to investigate whether gravidity, delivery, the age at menarche and menopause and estrogen exposure period are associated with subclinical atherosclerosis of the brain and carotid arteriopathy.Methods: This cross-sectional study formed part of a cohort study of Ohasama residents initiated in 1986. Brain atherosclerosis and carotid arteriopathy were diagnosed as white matter hyperintensity (WMH) and lacunae evident on brain magnetic resonance imaging (MRI) and carotid intimal media thickness (IMT) or plaque revealed by ultrasound, respectively. The effect of the reproductive events on brain atherosclerosis and carotid arteriopathy was investigated using logistic regression and general linear regression models after adjusting for covariates.Results: Among 966 women aged ≥ 55 years in 1998, we identified 622 and 711 women (mean age: 69.2 and 69.7 years, respectively) who underwent either MRI or carotid ultrasound between 1992–2008 or 1993–2018, respectively. The highest quartile of gravidity (≥ 5 vs. 3) and delivery (≥ 4 vs. 2), and the highest and second highest (3 vs. 2) quartiles of delivery were associated with an increased risk of WMH and carotid artery plaque, respectively. Neither of age at menarche, menopause, and estrogen exposure period estimated by subtracting age at menarche from age at menopause was associated with atherosclerotic changes of brain and carotid arteries.Conclusions: Higher gravidity and delivery are associated with subclinical atherosclerosis of the brain and carotid plaque

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Detection Accuracy of Soccer Players in Aerial Images Captured from Several Viewpoints

    No full text
    In the fields of professional and amateur sports, players&#8217; health, physical and physiological conditions during exercise should be properly monitored and managed. The authors of this paper previously proposed a real-time vital-sign monitoring system for players using a wireless multi-hop sensor network that transmits their vital data. However, existing routing schemes based on the received signal strength indicator or global positioning system do not work well, because of the high speeds and the density of sensor nodes attached to players. To solve this problem, we proposed a novel scheme, image-assisted routing (IAR), which estimates the locations of sensor nodes using images captured from cameras mounted on unmanned aerial vehicles. However, it is not clear where the best viewpoints are for aerial player detection. In this study, the authors investigated detection accuracy from several viewpoints using an aerial-image dataset generated with computer graphics. Experimental results show that the detection accuracy was best when the viewpoints were slightly distant from just above the center of the field. In the best case, the detection accuracy was very good: 0.005524 miss rate at 0.01 false positive-per-image. These results are informative for player detection using aerial images and can facilitate to realize IAR
    corecore