22 research outputs found

    Transparent TiO<sub>2</sub>/Cu/TiO<sub>2</sub> Multilayer for Electrothermal Application

    No full text
    Highly transparent indium-free multilayers of TiO2/Cu/TiO2 were obtained by means of annealing. The effects of Cu thickness and annealing temperature on the electrical and optical properties were investigated. The critical thickness of Cu mid-layer with optimal electrical and optical properties was 10 nm, with the figure of merit reaching as high as 5 × 10−3 Ω−1. Partial crystallization of the TiO2 layer enhanced the electrical and optical properties upon annealing. Electrothermal experiments showed that temperatures of more than 100 °C can be reached at a heating rate of 2 °C/s without any damage to the multilayers. The experimental results indicate that reliable transparent TiO2/Cu/TiO2 multilayers can be used for electrothermal application

    Progress in Amorphous Transparent Conducting Oxide Thin Films

    No full text
    With the increasing wide application of organic or polymer substrates, amorphous transparent conducting oxides (a-TCOs) had been widely applied to thin-film transistors, polymer/organic solar cells, electrochromic devices, electromagnetic shielding and other areas due to the combined transparency and conductivity as well as stable properties, processing compatibilities with current technologies and free of post-annealing. A-TCOs films were not the amorphous counterpart of crystalline TCOs but prepared with special elements under certain conditions. After the brief introduction to the working principle of TCO, the even general amorphous transparent semiconducting oxide was addressed intensively. It was worth to note that compared with c-TCOs and classic silicon, the features of electronic structure of a-TCOs were the cations with special configuration (n-1)d10ns0. The stable amorphous structure and excellent properties can be conserved due to larger overlap integral between the adjacent atoms, high mobility and robustness. Particularly, the near range structure characterization such as the medium range order, band structure described by density of states and the metastability of amorphous structure and the related properties were introduced as well. Afterwards, the properties and features of N-type and P-type a-TCOs were exampled in details, especially the indium-based systems, such as excellent a-In-Zn-O films. Less example of P-type a-TCOs were shown as no general principle had been formed for that. Finally, many state-of-art applications including thin-film transistor are introduced. Based upon the current status and emerging trend, three potential research perspective directions of a-TCO have been delivered:(1) to further investigate non-indium based a-TCO; (2) to develop on the P-type TCO with novel principle and material systems; (3) to enable the alternative application that occupied by conventional silicon previously

    Synergetic Design of Transparent Topcoats on ITO-Coated Plastic Substrate to Boost Surface Erosion Performance

    No full text
    Transparent conductive films (TCFs) have received much research attention in the area of aeronautical canopies. However, bad wear, corrosion resistance and weak erosion performance of TCFs dramatically limit their scalable application in the next-generation aeronautical and optoelectronic devices. To address these drawbacks, three types of optically transparent coatings, including acrylic, silicone and polyurethane (PU) coatings were developed and comparatively investigated ex situ in terms of Taber abrasion, nanoindentation and sand erosion tests to improve the wear-resistance and sand erosion abilities of ITO-coated PMMA substrates. To elucidate the sand erosion failure of the coatings, the nanoindentation technique was employed for quantitative assessment of the shape recovery abilities under probe indentation. Results show that the PU topcoats can greatly enhance the sand erosion properties, which were superior to those of acrylic and silicone topcoats. This result can be attributed to the good toughness and self-healing properties of PU topcoats. Additionally, high hardness and good Taber abrasion properties of the ITO films and silicone topcoats did not have an obvious or affirmatory effect on the sand erosion abilities, based on their brittleness and irreparable properties under sand erosion

    Control of the metal-to-insulator transition by substrate orientation in nickelates

    No full text
    We proved that the critical thickness for metal-to-insulator transition (MIT) of LaNiO3 could be controlled by substrate orientation. By means of density functional theory calculations, films grown on SrTiO3 substrates with (001), (110) and (111) orientations have different amount of charge transfer across the interface. Different charge transfer induces different interfacial conductivity behavior and at the same time modifies the carrier density of adjacent LaNiO3 films. The manipulation of MIT by substrate orientation can be achieved through interfacial charge transfer induced interfacial conductive layer with the modified conductivity of LNO layer.Published versio

    Removal of Matrix Interferences by Nano-MgO and Co-Adsorbents for Accurate Multi-Pesticide Residue Analysis in the Chinese Medicinal Herb, Paeoniae Radix Alba

    No full text
    A simple, accurate, and high-throughput analytical method was developed to detect 123 pesticide residues in Chinese medicinal herb Paeoniae Radix Alba (PRA) by introducing nano-MgO as a highly efficient purification material based on quick, easy, cheap, effective, rugged, and safe (QuEChERS) design concept. Various PRA samples were extracted using 8 mL 0.5% acetic acid-acetonitrile solution and purified by a dispersive solid-phase extraction method with 30 mg nano-MgO, 40 mg primary secondary amine (PSA), and 40 mg octadecylsilane (C18) as the cleanup adsorbents, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). 70.7% of pesticides showed a weak matrix effect after the purification process, indicating that this method can give the precise quantitative analysis of trace pesticides residue. The method was systematically validated under optimal conditions in five different kinds of PRA samples; good linearity was observed in the concentration range of 0.5–250 μg/L or 1–250 μg/L. Pesticide recovery in each sample spiked at concentrations of 20, 50, and 200 μg/kg ranged from 98.0% to 111% and the mean relative standard deviation ranged from 2.72% to 5.70%. Furthermore, the method comparison with the traditional QuEChERS method suggested the feasibility, advantages, and potential application prospect of the present method for the multi-pesticide residue analysis in various PRA samples

    Comprehensive Analysis of FASN in Tumor Immune Infiltration and Prognostic Value for Immunotherapy and Promoter DNA Methylation

    No full text
    Fatty acid synthase (FASN) promotes tumor progression in multiple cancers. In this study, we comprehensively examined the expression, prognostic significance, and promoter methylation of FASN, and its correlation with immune cell infiltration in pan-cancer. Our results demonstrated that elevated FASN expression was significantly associated with an unfavorable prognosis in many cancer types. Furthermore, FASN promoter DNA methylation can be used as a tumor prognosis marker. Importantly, high levels of FASN were significantly negatively correlated with tumor immune infiltration in 35 different cancers. Additionally, FASN was significantly associated with tumor mutational burden (TMB) and microsatellite instability (MSI) in multiple malignancies, suggesting that it may be essential for tumor immunity. We also investigated the effects of FASN expression on immunotherapy efficacy and prognosis. In up to 15 tumors, it was significantly negatively correlated with immunotherapy-related genes, such as PD-1, PD-L1, and CTLA-4. Moreover, we found that tumors with high FASN expression may be more sensitive to immunotherapy and have a good prognosis with PD-L1 treatment. Finally, we confirmed the tumor-suppressive effect of mir-195-5p through FASN. Altogether, our results suggested that FASN may serve as a novel prognostic indicator and immunotherapeutic target in various malignancies

    Stereoselective Analysis and Degradation of Pyrisoxazole in Cabbage, Pakchoi, and Pepper by Liquid Chromatography Tandem Mass Spectrometry

    No full text
    Pyrisoxazole is a chiral fungicide with high sterilizing activity to the plant pathogenic bacteria and thus can be used for protecting the vegetables from gray mold, powdery mildew, and brown rot. The present work aimed to explore its stereoselective degradation in cabbage, pakchoi, and pepper samples. The enantioseparation and analysis on chiral column Lux Cellulose-3 based on liquid chromatography tandem mass spectrometry was developed coupled to the QuEChERS method. The recoveries of the stereoisomers in various vegetables ranged from 72.6 to 124% with RSD lower than 5.0%. Enantioselective dissipation of pyrisoxazole in vegetables displayed that (−)-A-pyrisoxazole was preferentially degraded versus (+)-A-pyrisoxazole in all the vegetables. (+)-B-pyrisoxazole was preferentially degraded in cabbage, while there was no obvious enantioselectivity in pakchoi and pepper. Meanwhile, stereoselectivity analysis demonstrated that (±)-A-pyrisoxazole was degraded faster than (±)-B-pyrisoxazole in pakchoi and pepper, while there was no stereoselective degradation in cabbages
    corecore