50 research outputs found

    Pathogenic NR2F1 variants cause a developmental ocular phenotype recapitulated in a mutant mouse model.

    Get PDF
    Pathogenic NR2F1 variants cause a rare autosomal dominant neurodevelopmental disorder referred to as the Bosch-Boonstra-Schaaf Optic Atrophy Syndrome. Although visual loss is a prominent feature seen in affected individuals, the molecular and cellular mechanisms contributing to visual impairment are still poorly characterized. We conducted a deep phenotyping study on a cohort of 22 individuals carrying pathogenic NR2F1 variants to document the neurodevelopmental and ophthalmological manifestations, in particular the structural and functional changes within the retina and the optic nerve, which have not been detailed previously. The visual impairment became apparent in early childhood with small and/or tilted hypoplastic optic nerves observed in 10 cases. High-resolution optical coherence tomography imaging confirmed significant loss of retinal ganglion cells with thinning of the ganglion cell layer, consistent with electrophysiological evidence of retinal ganglion cells dysfunction. Interestingly, for those individuals with available longitudinal ophthalmological data, there was no significant deterioration in visual function during the period of follow-up. Diffusion tensor imaging tractography studies showed defective connections and disorganization of the extracortical visual pathways. To further investigate how pathogenic NR2F1 variants impact on retinal and optic nerve development, we took advantage of an Nr2f1 mutant mouse disease model. Abnormal retinogenesis in early stages of development was observed in Nr2f1 mutant mice with decreased retinal ganglion cell density and disruption of retinal ganglion cell axonal guidance from the neural retina into the optic stalk, accounting for the development of optic nerve hypoplasia. The mutant mice showed significantly reduced visual acuity based on electrophysiological parameters with marked conduction delay and decreased amplitude of the recordings in the superficial layers of the visual cortex. The clinical observations in our study cohort, supported by the mouse data, suggest an early neurodevelopmental origin for the retinal and optic nerve head defects caused by NR2F1 pathogenic variants, resulting in congenital vision loss that seems to be non-progressive. We propose NR2F1 as a major gene that orchestrates early retinal and optic nerve head development, playing a key role in the maturation of the visual system

    SLC38A8 mutations result in arrested retinal development with loss of cone photoreceptor specialization

    Get PDF
    Foveal hypoplasia, optic nerve decussation defects and anterior segment dysgenesis is an autosomal recessive disorder arising from SLC38A8 mutations. SLC38A8 is a putative glutamine transporter with strong expression within the photoreceptor layer in the retina. Previous studies have been limited due to lack of quantitative data on retinal development and nystagmus characteristics. In this multi-centre study, a custom-targeted next generation sequencing (NGS) gene panel was used to identify SLC38A8 mutations from a cohort of 511 nystagmus patients. We report 16 novel SLC38A8 mutations. The sixth transmembrane domain is most frequently disrupted by missense SLC38A8 mutations. Ninety percent of our cases were initially misdiagnosed as PAX6-related phenotype or ocular albinism prior to NGS. We characterized the retinal development in vivo in patients with SLC38A8 mutations using high-resolution optical coherence tomography. All patients had severe grades of arrested retinal development with lack of a foveal pit and no cone photoreceptor outer segment lengthening. Loss of foveal specialization features such as outer segment lengthening implies reduced foveal cone density, which contributes to reduced visual acuity. Unlike other disorders (such as albinism or PAX6 mutations) which exhibit a spectrum of foveal hypoplasia, SLC38A8 mutations have arrest of retinal development at an earlier stage resulting in a more under-developed retina and severe phenotype

    Ophthalmology

    Get PDF
    To characterize the genotypic and phenotypic spectrum of foveal hypoplasia (FH). Multicenter, observational study. A total of 907 patients with a confirmed molecular diagnosis of albinism, PAX6, SLC38A8, FRMD7, AHR, or achromatopsia from 12 centers in 9 countries (n = 523) or extracted from publicly available datasets from previously reported literature (n = 384). Individuals with a confirmed molecular diagnosis and availability of foveal OCT scans were identified from 12 centers or from the literature between January 2011 and March 2021. A genetic diagnosis was confirmed by sequence analysis. Grading of FH was derived from OCT scans. Grade of FH, presence or absence of photoreceptor specialization (PRS+ vs. PRS-), molecular diagnosis, and visual acuity (VA). The most common genetic etiology for typical FH in our cohort was albinism (67.5%), followed by PAX6 (21.8%), SLC38A8 (6.8%), and FRMD7 (3.5%) variants. AHR variants were rare (0.4%). Atypical FH was seen in 67.4% of achromatopsia cases. Atypical FH in achromatopsia had significantly worse VA than typical FH (P < 0.0001). There was a significant difference in the spectrum of FH grades based on the molecular diagnosis (chi-square = 60.4, P < 0.0001). All SLC38A8 cases were PRS- (P = 0.003), whereas all FRMD7 cases were PRS+ (P < 0.0001). Analysis of albinism subtypes revealed a significant difference in the grade of FH (chi-square = 31.4, P < 0.0001) and VA (P = 0.0003) between oculocutaneous albinism (OCA) compared with ocular albinism (OA) and Hermansky-Pudlak syndrome (HPS). Ocular albinism and HPS demonstrated higher grades of FH and worse VA than OCA. There was a significant difference (P < 0.0001) in VA between FRMD7 variants compared with other diagnoses associated with FH. We characterized the phenotypic and genotypic spectrum of FH. Atypical FH is associated with a worse prognosis than all other forms of FH. In typical FH, our data suggest that arrested retinal development occurs earlier in SLC38A8, OA, HPS, and AHR variants and later in FRMD7 variants. The defined time period of foveal developmental arrest for OCA and PAX6 variants seems to demonstrate more variability. Our findings provide mechanistic insight into disorders associated with FH and have significant prognostic and diagnostic value

    Optic Atrophy in a Patient With Atypical Pantothenate Kinase-Associated Neurodegeneration

    No full text
    We describe a 50-year-old man who developed eight-and-a-half syndrome associated with an ipsilateral trigeminal nerve palsy because of a post-transplant lymphoproliferative disorder. This case widens the spectrum of eight-and-a-half syndrome to include a thirteen-and-a-half syndrome

    A Hypomorphic PTPN23 Variant Presenting Optic Atrophy and Spasmus Nutans-Like Nystagmus Without Brain Structural Abnormality

    No full text
    Protein tyrosine phosphatase, non-receptor type 23 (PTPN23) is an important protein for the development of the nervous system. Mutations in the gene encoding this protein lead to a rare autosomal recessive disorder characterized by developmental delay, intellectual disability, and brain structural abnormalities. Although optic atrophy have been reported in more than half of reported cases, detailed description of ophthalmological findings is largely unknown

    Correlation between bilateral lateral rectus muscle recession and myopic progression in children with intermittent exotropia

    No full text
    Abstract Although several studies have reported about the relationship between the surgical correction of intermittent exotropia and myopic progression, it remains unclear, unlike the relationship between esotropia and hyperopia. Thus, this retrospective case control study evaluated the impact of bilateral lateral rectus recession in intermittent exotropia on myopic progression. This study included 388 patients with intermittent exotropia. The refractive errors and degree of exodeviation at each follow up period were analyzed. The rate of myopic progression was −0.46 ± 0.62 diopter (D)/year in patients who underwent surgery and −0.58 ± 0.78 D/year in patients who did not, with no significant difference between them (p = 0.254). Patients who had recurrences of more than 10 prism diopters were compared with patients who did not have. The rate of myopic progression was −0.57 ± 0.72 D/year in the recurrent group and −0.44 ± 0.61 D/year in the non-recurrent group, with no significant difference between them (p = 0.237). Patients with fast myopic progression had more recurrence than patients with slow progression (p = 0.042). Moreover, recurrence had a positive correlation with fast myopic progression (OR = 2.537, p = 0.021). Conclusively, the surgical correction of intermittent exotropia did not influence myopic progression

    Unexplained Becomes Explained

    No full text

    Unexplained Becomes Explained

    No full text
    corecore