80,775 research outputs found

    Semiclassical energy formulas for power-law and log potentials in quantum mechanics

    Full text link
    We study a single particle which obeys non-relativistic quantum mechanics in R^N and has Hamiltonian H = -Delta + V(r), where V(r) = sgn(q)r^q. If N \geq 2, then q > -2, and if N = 1, then q > -1. The discrete eigenvalues E_{n\ell} may be represented exactly by the semiclassical expression E_{n\ell}(q) = min_{r>0}\{P_{n\ell}(q)^2/r^2+ V(r)}. The case q = 0 corresponds to V(r) = ln(r). By writing one power as a smooth transformation of another, and using envelope theory, it has earlier been proved that the P_{n\ell}(q) functions are monotone increasing. Recent refinements to the comparison theorem of QM in which comparison potentials can cross over, allow us to prove for n = 1 that Q(q)=Z(q)P(q) is monotone increasing, even though the factor Z(q)=(1+q/N)^{1/q} is monotone decreasing. Thus P(q) cannot increase too slowly. This result yields some sharper estimates for power-potential eigenvlaues at the bottom of each angular-momentum subspace.Comment: 20 pages, 5 figure

    Energy bounds for the spinless Salpeter equation: harmonic oscillator

    Get PDF
    We study the eigenvalues E_{n\ell} of the Salpeter Hamiltonian H = \beta\sqrt(m^2 + p^2) + vr^2, v>0, \beta > 0, in three dimensions. By using geometrical arguments we show that, for suitable values of P, here provided, the simple semi-classical formula E = min_{r > 0} {v(P/r)^2 + \beta\sqrt(m^2 + r^2)} provides both upper and lower energy bounds for all the eigenvalues of the problem.Comment: 8 pages, 1 figur

    Coulomb plus power-law potentials in quantum mechanics

    Full text link
    We study the discrete spectrum of the Hamiltonian H = -Delta + V(r) for the Coulomb plus power-law potential V(r)=-1/r+ beta sgn(q)r^q, where beta > 0, q > -2 and q \ne 0. We show by envelope theory that the discrete eigenvalues E_{n\ell} of H may be approximated by the semiclassical expression E_{n\ell}(q) \approx min_{r>0}\{1/r^2-1/(mu r)+ sgn(q) beta(nu r)^q}. Values of mu and nu are prescribed which yield upper and lower bounds. Accurate upper bounds are also obtained by use of a trial function of the form, psi(r)= r^{\ell+1}e^{-(xr)^{q}}. We give detailed results for V(r) = -1/r + beta r^q, q = 0.5, 1, 2 for n=1, \ell=0,1,2, along with comparison eigenvalues found by direct numerical methods.Comment: 11 pages, 3 figure

    Relativistic N-Boson Systems Bound by Oscillator Pair Potentials

    Full text link
    We study the lowest energy E of a relativistic system of N identical bosons bound by harmonic-oscillator pair potentials in three spatial dimensions. In natural units the system has the semirelativistic ``spinless-Salpeter'' Hamiltonian H = \sum_{i=1}^N \sqrt{m^2 + p_i^2} + \sum_{j>i=1}^N gamma |r_i - r_j|^2, gamma > 0. We derive the following energy bounds: E(N) = min_{r>0} [N (m^2 + 2 (N-1) P^2 / (N r^2))^1/2 + N (N-1) gamma r^2 / 2], N \ge 2, where P=1.376 yields a lower bound and P=3/2 yields an upper bound for all N \ge 2. A sharper lower bound is given by the function P = P(mu), where mu = m(N/(gamma(N-1)^2))^(1/3), which makes the formula for E(2) exact: with this choice of P, the bounds coincide for all N \ge 2 in the Schroedinger limit m --> infinity.Comment: v2: A scale analysis of P is now included; this leads to revised energy bounds, which coalesce in the large-m limi

    Asymptotic iteration method for eigenvalue problems

    Full text link
    An asymptotic interation method for solving second-order homogeneous linear differential equations of the form y'' = lambda(x) y' + s(x) y is introduced, where lambda(x) \neq 0 and s(x) are C-infinity functions. Applications to Schroedinger type problems, including some with highly singular potentials, are presented.Comment: 14 page

    FearNot! An Anti-Bullying Intervention: Evaluation of an Interactive Virtual Learning Environment

    Get PDF
    Original paper can be found at: http://www.aisb.org.uk/publications/proceedings.shtm

    Transient modeling of the thermohydraulic behavior of high temperature heat pipes for space reactor applications

    Get PDF
    Many proposed space reactor designs employ heat pipes as a means of conveying heat. Previous researchers have been concerned with steady state operation, but the transient operation is of interest in space reactor applications due to the necessity of remote startup and shutdown. A model is being developed to study the dynamic behavior of high temperature heat pipes during startup, shutdown and normal operation under space environments. Model development and preliminary results for a hypothetical design of the system are presented

    General energy bounds for systems of bosons with soft cores

    Full text link
    We study a bound system of N identical bosons interacting by model pair potentials of the form V(r) = A sgn(p)r^p + B/r^2, A > 0, B >= 0. By using a variational trial function and the `equivalent 2-body method', we find explicit upper and lower bound formulas for the N-particle ground-state energy in arbitrary spatial dimensions d > 2 for the two cases p = 2 and p = -1. It is demonstrated that the upper bound can be systematically improved with the aid of a special large-N limit in collective field theory

    Semirelativistic stability of N-boson systems bound by 1/r pair potentials

    Full text link
    We analyze a system of self-gravitating identical bosons by means of a semirelativistic Hamiltonian comprising the relativistic kinetic energies of the involved particles and added (instantaneous) Newtonian gravitational pair potentials. With the help of an improved lower bound to the bottom of the spectrum of this Hamiltonian, we are able to enlarge the known region for relativistic stability for such boson systems against gravitational collapse and to sharpen the predictions for their maximum stable mass.Comment: 11 pages, considerably enlarged introduction and motivation, remainder of the paper unchange

    An effective singular oscillator for Duffin-Kemmer-Petiau particles with a nonminimal vector coupling: a two-fold degeneracy

    Full text link
    Scalar and vector bosons in the background of one-dimensional nonminimal vector linear plus inversely linear potentials are explored in a unified way in the context of the Duffin-Kemmer-Petiau theory. The problem is mapped into a Sturm-Liouville problem with an effective singular oscillator. With boundary conditions emerging from the problem, exact bound-state solutions in the spin-0 sector are found in closed form and it is shown that the spectrum exhibits degeneracy. It is shown that, depending on the potential parameters, there may or may not exist bound-state solutions in the spin-1 sector.Comment: 1 figure. arXiv admin note: substantial text overlap with arXiv:1009.159
    corecore