We study the eigenvalues E_{n\ell} of the Salpeter Hamiltonian H =
\beta\sqrt(m^2 + p^2) + vr^2, v>0, \beta > 0, in three dimensions. By using
geometrical arguments we show that, for suitable values of P, here provided,
the simple semi-classical formula E = min_{r > 0} {v(P/r)^2 + \beta\sqrt(m^2 +
r^2)} provides both upper and lower energy bounds for all the eigenvalues of
the problem.Comment: 8 pages, 1 figur