21 research outputs found

    Oncogene-induced senescence: The bright and dark side of the response

    No full text
    In late 1990s, it was shown that activated oncogenes are able to induce senescence. Since then large leaps in understanding this phenomenon have been achieved. There is substantial evidence supporting oncogene-induced senescence (OIS) as a potent antitumor barrier in vivo. Multiple pathways participating in cell cycle regulation, DNA damage signaling, immune response, and bioenergetics regulate the process. Despite its beneficial effects the senescent cell is thought to promote carcinogenesis and age-related disease in a nonautonomous manner. Here, we highlight the works dealing with all these aspects and discuss the studies proposing therapeutic exploitation of OIS. © 2010 Elsevier Ltd

    Genomic instability an evolving hallmark of cancer

    No full text
    Genomic instability is a characteristic of most cancers. In hereditary cancers, genomic instability results from mutations in DNA repair genes and drives cancer development, as predicted by the mutator hypothesis. In sporadic (non-hereditary) cancers the molecular basis of genomic instability remains unclear, but recent high-throughput sequencing studies suggest that mutations in DNA repair genes are infrequent before therapy, arguing against the mutator hypothesis for these cancers. Instead, the mutation patterns of the tumour suppressor TP53 (which encodes p53), ataxia telangiectasia mutated (ATM) and cyclin-dependent kinase inhibitor 2A (CDKN2A; which encodes p16INK4A and p14ARF) support the oncogene-induced DNA replication stress model, which attributes genomic instability and TP53 and ATM mutations to oncogene-induced DNA damage. © 2010 Macmillan Publishers Limited. All rights reserved

    An oncogene-induced DNA damage model for cancer development

    No full text
    Of all types of DNA damage, DNA double-strand breaks (DSBs) pose the greatest challenge to cells. One might have, therefore, anticipated that a sizable number of DNA DSBs would be incompatible with cell proliferation. Yet recent experimental findings suggest that, in both precancerous lesions and cancers, activated oncogenes induce stalling and collapse of DNA replication forks, which in turn leads to formation of DNA DSBs. This continuous formation of DNA DSBs may contribute to the genomic instability that characterizes the vast majority of human cancers. In addition, in precancerous lesions, these DNA DSBs activate p53, which, by inducing apoptosis or senescence, raises a barrier to tumor progression. Breach of this barrier by various mechanisms, most notably by p53 mutations, that impair the DNA damage response pathway allows cancers to develop. Thus, oncogene-induced DNA damage may explain two key features of cancer: genomic instability and the high frequency of p53 mutations

    Microcollimator for micrometer-wide stripe irradiation of cells using 2030 keV X rays

    No full text
    The exposure of subnuclear compartments of cells to ionizing radiation is currently not trivial. We describe here a collimator for micrometer-wide stripe irradiation designed to work with conventional high-voltage X-ray tubes and cells cultured on standard glass cover slips. The microcollimator was fabricated by high-precision silicon micromachining and consists of X-ray absorbing chips with grooves of highly controlled depths, between 0.510 μm, along their surfaces. These grooves form X-ray collimating slits when the chips are stacked against each other. The use of this device for radiation biology was examined by irradiating human cells with X rays having energies between 2030 keV. After irradiation, p53 binding protein 1 (53BP1), a nuclear protein that is recruited at sites of DNA double-strand breaks, clustered in lines corresponding to the irradiated stripes. © 2009 by Radiation Research Society

    Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks

    No full text
    The mechanisms by which eukaryotic cells sense DNA doublestrand breaks (DSBs) in order to initiate checkpoint responses are poorly understood. 53BP1 is a conserved checkpoint protein with properties of a DNA DSB sensor 1-5. Here, we solved the structure of the domain of 53BP1 that recruits it to sites of DSBs. This domain consists of two tandem tudor folds with a deep pocket at their interface formed by residues conserved in the budding yeast Rad9 and fission yeast Rhp9/Crb2 orthologues. In vitro, the 53BP1 tandem tudor domain bound histone H3 methylated on Lys 79 using residues that form the walls of the pocket; these residues were also required for recruitment of 53BP1 to DSBs. Suppression of DOT1L, the enzyme that methylates Lys 79 of histone H3, also inhibited recruitment of 53BP1 to DSBs. Because methylation of histone H3 Lys 79 was unaltered in response to DNA damage, we propose that 53BP1 senses DSBs indirectly through changes in higher-order chromatin structure that expose the 53BP1 binding site

    Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks

    No full text
    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells. © 2016 The Author(s

    Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions

    No full text
    DNA damage checkpoint genes, such as p53, are frequently mutated in human cancer, but the selective pressure for their inactivation remains elusive. We analysed a panel of human lung hyperplasias, all of which retained wild-type p53 genes and had no signs of gross chromosomal instability, and found signs of a DNA damage response, including histone H2AX and Chk2 phosphorylation, p53 accumulation, focal staining of p53 binding protein 1 (53BP1) and apoptosis. Progression to carcinoma was associated with p53 or 53BP1 inactivation and decreased apoptosis. A DNA damage response was also observed in dysplastic nevi and in human skin xenografts, in which hyperplasia was induced by overexpression of growth factors. Both lung and experimentally-induced skin hyperplasias showed allelic imbalance at loci that are prone to DNA double-strand break formation when DNA replication is compromised (common fragile sites). We propose that, from its earliest stages, cancer development is associated with DNA replication stress, which leads to DNA double-strand breaks, genomic instability and selective pressure for p53 mutations

    Modulation of the E2F1-driven cancer cell fate by the DNA damage response machinery and potential novel E2F1 targets in osteosarcomas

    No full text
    Osteosarcoma is the most common primary bone cancer. Mutations of the RB gene represent the most frequent molecular defect in this malignancy. A major consequence of this alteration is that the activity of the key cell cycle regulator E2F1 is unleashed from the inhibitory effects of pRb. Studies in animal models and in human cancers have shown that deregulated E2F1 overexpression possesses either "oncogenic" or " oncosuppressor" properties, depending on the cellular context. To address this issue in osteosarcomas, we examined the status of E2F1 relative to cell proliferation and apoptosis in a clinical setting of human primary osteosarcomas and in E2F1-inducible osteosarcoma cell line models that are wild-type and deficient for p53. Collectively, our data demonstrated that high E2F1 levels exerted a growth-suppressing effect that relied on the integrity of the DNA damage response network. Surprisingly, induction of p73, an established E2F1 target, was also DNA damage response-dependent. Furthermore, a global proteome analysis associated with bioinformatics revealed novel E2F1-regulated genes and potential E2F1-driven signaling networks that could provide useful targets in challenging this aggressive neoplasm by innovative therapies. Copyright © American Society for Investigative Pathology
    corecore