3,155 research outputs found

    Validation of the Pulmonary Function System for Use on the International Space Station

    Get PDF
    Aerobic deconditioning occurs during long duration space flight despite the use of exercise countermeasures (Convertino, 1996). As a part of International Space Station (ISS) medical operations, periodic tests designed to estimate aerobic capacity are performed to track changes in aerobic fitness and to determine the effectiveness of exercise countermeasures. These tests are performed prior to, during, and after missions of greater than 30 days in duration. Crewmembers selected for missions aboard the ISS perform a graded exercise test on a cycle ergometer approximately 270 days prior to their scheduled launch date in order to measure peak oxygen consumption (VO2PK) and peak heart rate (HRpk). Approximately 30 to 45 days prior to launch, crewmembers perform a submaximal cycle ergometer test at work rates set to elicit 25, 50 and 75% of their pre-flight VO2PK. This test, known as the Periodic Fitness Evaluation (PFE), serves as a baseline measure to which subsequent in-and post-flight exercise tests are compared. While onboard the ISS, crewmembers are normally scheduled to perform the PFE beginning with flight day (FD) 14 and every 30 days thereafter. The PFE is also conducted 5 and 30 days following flight. Using PFE data, aerobic fitness is estimated by quantifying the VO2 vs. HR relationship using linear regression and calculating the VO2 that would occur at the crewmember s previously measured HRpk. Currently, for data collected during flight, this technique assumes that the pre- vs. in-flight oxygen consumption per given cycle workload is similar. However, the validity of this assumption is based upon a sparse amount of data collected during the Skylab era (Michel, et al. 1977). The method of using heart rate and cycle ergometer work rates has been used to estimate aerobic fitness in normal gravity (Astrand and Ryhming, 1954; Lee, 1993). Due to spaceflight induced physiological alterations, such as shifts in extracellular fluid (e.g. plasma) volume, this method may not be valid during space flight. In addition, the ergometer onboard ISS is vibration-isolated and moves with the astronaut s application of force into the pedals. The effect of this movement on the VO2 of cycle exercise on ISS has not been quantified

    Fluctuation-dissipation ratios in the dynamics of self-assembly

    Full text link
    We consider two seemingly very different self-assembly processes: formation of viral capsids, and crystallization of sticky discs. At low temperatures, assembly is ineffective, since there are many metastable disordered states, which are a source of kinetic frustration. We use fluctuation-dissipation ratios to extract information about the degree of this frustration. We show that our analysis is a useful indicator of the long term fate of the system, based on the early stages of assembly.Comment: 8 pages, 6 figure

    Smart sensing systems for in-home health status and emotional well-being monitoring during COVID-19

    Get PDF
    The COVID-19 pandemic has restricted the mobility of the population. The experts propose several solutions in order to decrease the number of patients infected with this new virus by treating and monitoring them within the comfort of their own home. A new direction for the research has been identified including healthcare smart sensing systems which can provide medical diagnoses, surveillance, and treatment partially or totally remotely. The field of wearable, smart sensing solutions is becoming nowadays a widely accepted solution characterized also by the increased level of acceptance with regard to home health status monitoring. Pervasive computing and wearable solutions are frequently a topic included in current projects and are expected in new future developments, particularly in the pandemic context which forces people to remain mostly at home. As part of wearable devices the design of textiles, computer science, and smart materials are the three major development directions. The latest developments associated with the monitoring of health status and emotional well-being are presented and discussed in this chapter.info:eu-repo/semantics/submittedVersio

    Comparison of the US and Russian Cycle Ergometers

    Get PDF
    The purpose of this study was to compare the U.S. and Russian cycle ergometers focusing on the mechanical differences of the devices and the physiological differences observed while using the devices. Methods: First, the mechanical loads provided by the U.S. Cycle Ergometer with Vibration Isolation System (CEVIS) and the Russian Veloergometer were measured using a calibration dynamometer. Results were compared and conversion equations were modeled to determine the actual load provided by each device. Second, ten male subjects (32.9 +/- 6.5 yrs, 180.6 +/- 4.4 cm; 81.9 +/- 6.9 kg) experienced with both cycling and exercise testing completed a standardized submaximal exercise test protocol on CEVIS and Veloergometer. The exercise protocol involved 8 sub-maximal workloads each lasting 3 minutes for a total of 24 minutes per session, or until the end of the stage when the subject reached 85% of peak oxygen consumption or age-predicted maximum heart rate (220 - age). The workload started at 50 Watts (W), increased to 100 W, and then increased 25 W every 3 minutes until reaching a peak workload of 250 W. Physiological variables were then compared at each workload by repeated measures ANOVA or paired t-tests (p<0.05). Results: While both CEVIS and Veloergometer produced significantly lower workloads than the displayed workload, CEVIS produced even lower loads than Veloergometer (p<0.05) at each indicated workload. Despite this fact, the only physiological variables that showed a significant difference between the ergometers were VE (125 - 250W), VO2 (175 and 250 W), and VCO2 (175 W). All other physiological data were not statistically different between CEVIS and Veloergometer. Conclusion: Although workloads were different between ergometers, relatively few physiological differences were observed. Therefore, CEVIS workloads of 87.5 - 262.5 W can be rounded to the nearest 25 W increment and performed on the Veloergometer

    Long‐term variability in the solar diurnal tide observed by HRDI and simulated by the GSWM

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94861/1/grl8658.pd

    Nonlinear optics: Feature issue introduction

    Get PDF
    This joint issue of Optics Express and Optical Materials Express features 18 state-of-the art articles that witness actual developments in nonlinear optics, including those by authors who participated in the international conference Nonlinear Optics held in Waikoloa, Hawaii from July 15 to 19, 2019. As an introduction, the editors provide a summary of these articles that cover all aspects of nonlinear optics, from basic nonlinear effects and novel frequency windows to innovative nonlinear materials and devices, thereby paving the way for new nonlinear optical concepts and forthcoming applications

    Time-to-Fatigue and Intramuscular pH Measured via NIRS During Handgrip Exercise in Trained and Sedentary Individuals

    Get PDF
    In exercising muscles force production and muscular endurance are impaired by a decrease in intramuscular pH. The effects of aerobic training (AT) on preventing acidosis and prolonging exercise time in muscles not specifically targeted by the training are unknown. Purpose: To compare interstitial pH, measured non-invasively with near infrared spectroscopy (NIRS), in the flexor digitorum profundus (FDP) during rhythmic handgrip exercise in sedentary subjects and those who participate in AT activities that target the lower body. Methods: Maximal isometric force (MIF) was measured on three separate days in AT (n=5) and sedentary (n=8) subjects using a handgrip dynamometer (HGD). Isometric muscular endurance (IME) was measured during five trials, each separated by at least 48 hrs. For each IME trial subjects rhythmically squeezed (4 sec at 40% of MVC) and relaxed (2 sec) to fatigue or failure to reach the target force in three consecutive contractions or four non-consecutive contractions. Interstitial pH was derived from spectra collected using a NIRS sensor adhered to the skin over the FDP. The first four IME trials served to familiarize subjects with the protocol; the fifth trial was used for analysis. NIRS-derived pH was averaged in 30 sec increments. Between group differences in MIF and exercise time were tested using paired t-tests. A repeated measures ANOVA was used to analyze effects of AT and exercise time on pH. Results: MIF was not different between groups (mean SD; aerobic=415.6 95.4 N vs. sedentary =505.1 107.4 N). Time to fatigue was greater in the AT than in the sedentary group (mean SD: 611 173 sec vs. 377 162 sec, p<0.05). pH was not different between groups at any time point. Average pH decreased (p<0.05) in both groups from rest (pH=7.4) through 90 sec of exercise (pH=6.9), but did not decrease further throughout the remainder of exercise. Conclusion: Although between group differences in pH were not detected, differences during the onset of exercise may exist with a more frequent sampling. AT individuals appear to better tolerate decreased interstitial pH and are able to continue submaximal muscular work, possibly due to psychological familiarization to muscular fatigue and/or systemic physiological benefits

    Quantum computation and the physical computation level of biological information processing

    Full text link
    On the basis of introspective analysis, we establish a crucial requirement for the physical computation basis of consciousness: it should allow processing a significant amount of information together at the same time. Classical computation does not satisfy the requirement. At the fundamental physical level, it is a network of two body interactions, each the input-output transformation of a universal Boolean gate. Thus, it cannot process together at the same time more than the three bit input of this gate - many such gates in parallel do not count since the information is not processed together. Quantum computation satisfies the requirement. At the light of our recent explanation of the speed up, quantum measurement of the solution of the problem is analogous to a many body interaction between the parts of a perfect classical machine, whose mechanical constraints represent the problem to be solved. The many body interaction satisfies all the constraints together at the same time, producing the solution in one shot. This shades light on the physical computation level of the theories that place consciousness in quantum measurement and explains how informations coming from disparate sensorial channels come together in the unity of subjective experience. The fact that the fundamental mechanism of consciousness is the same of the quantum speed up, gives quantum consciousness a potentially enormous evolutionary advantage.Comment: 13 page
    corecore