31 research outputs found

    Glibenclamide—10-h Treatment Window in a Clinically Relevant Model of Stroke

    Get PDF
    Glibenclamide improves outcomes in rat models of stroke, with treatment as late as 6 h after onset of ischemia shown to be beneficial. Because the molecular target of glibenclamide, the sulfonylurea receptor 1 (Sur1)-regulated NCCa-ATP channel, is upregulated de novo by a complex transcriptional mechanism, and the principal pathophysiological target, brain swelling, requires hours to develop, we hypothesized that the treatment window would exceed 6 h. We studied a clinically relevant rat model of stroke in which middle cerebral artery occlusion (75% < reduction in LDF signal ≤90%) was produced using an intra-arterial occluder. Recanalization was obtained 4.5 h later by removing the occluder. At that time, we administered recombinant tissue plasminogen activator (rtPA; 0.9 mg/kg IV over 30 min). Immunolabeling showed modest expression of Sur1 5 h after onset of ischemia, with expression increasing 7- to 11-fold (P < 0.01) by 24 h. Rats were administered either vehicle or glibenclamide (10 μg/kg IP loading dose plus 200 ng/h by constant subcutaneous infusion) beginning 4.5 or 10 h after onset of ischemia. In rats treated at 4.5 or 10 h, glibenclamide significantly reduced hemispheric swelling at 24 h from (mean ± SEM) 14.7 ± 1.5% to 8.1 ± 1.6% or 8.8 ± 1.1% (both P < 0.01), respectively, and significantly reduced 48-h mortality from 53% to 17% or 12% (both P < 0.01), and improved Garcia scores at 48 h from 3.8 ± 0.62 to 7.6 ± 0.70 or 8.4 ± 0.74 (both P < 0.01). We conclude that, in a clinically relevant model of stroke, the treatment window for glibenclamide extends to 10 h after onset of ischemia

    On the importance of long-term functional assessment after stroke to improve translation from bench to bedside

    Get PDF
    Despite extensive research efforts in the field of cerebral ischemia, numerous disappointments came from the translational step. Even if experimental studies showed a large number of promising drugs, most of them failed to be efficient in clinical trials. Based on these reports, factors that play a significant role in causing outcome differences between animal experiments and clinical trials have been identified; and latest works in the field have tried to discard them in order to improve the scope of the results. Nevertheless, efforts must be maintained, especially for long-term functional evaluations. As observed in clinical practice, animals display a large degree of spontaneous recovery after stroke. The neurological impairment, assessed by basic items, typically disappears during the firsts week following stroke in rodents. On the contrary, more demanding sensorimotor and cognitive tasks underline other deficits, which are usually long-lasting. Unfortunately, studies addressing such behavioral impairments are less abundant. Because the characterization of long-term functional recovery is critical for evaluating the efficacy of potential therapeutic agents in experimental strokes, behavioral tests that proved sensitive enough to detect long-term deficits are reported here. And since the ultimate goal of any stroke therapy is the restoration of normal function, an objective appraisal of the behavioral deficits should be done

    NMDA-induced striatal brain damage and time-dependence reliability of thionin staining in rats

    Full text link
    Excitotoxic neuronal death induced by intracerebral injection of NMDA is a widely used model for investigating the potentially neuroprotective action of pharmacological agents against brain insults involving excitotoxic processes. Surprisingly, the time-course of NMDA-induced brain damage yet has not been investigated in the rat. Answering this question clearly needs to be assessed, given that the validity of preclinical neuroprotection studies requires to be insured that brain damage has reached a plateau that corresponds to the maximal extension of neuronal death at the time the brain is removed for histological analysis. Here, we investigated the time-course of neuronal death and the time-dependence validity of thionin coloration in rats that were given an intrastriatal injection of NMDA of 50 nmol or 70 nmol. Our results show that, whatever the dose used, NMDA-induced brain damage reaches its maximal value 24-48 h after the insult. They further indicate that the volume values of brain damage as estimated by thionin coloration constitute reliable data when the brain is removed up to 48 h after injection of NMDA. However, if the brain is removed more than 48 h after the excitotoxic insult onset, there is no alternative of using other techniques, such as immunochemical or neuroimaging techniques

    Molecular magnetic resonance imaging discloses endothelial activation after transient ischaemic attack

    No full text
    About 20% of patients with ischaemic stroke have a preceding transient ischaemic attack, which is clinically defined as focal neurological symptoms of ischaemic origin resolving spontaneously. Failure to diagnose transient ischaemic attack is a wasted opportunity to prevent recurrent disabling stroke. Unfortunately, diagnosis can be difficult, due to numerous mimics, and to the absence of a specific test. New diagnostic tools are thus needed, in particular for radiologically silent cases, which correspond to the recommended tissue-based definition of transient ischaemic attack. As endothelial activation is a hallmark of cerebrovascular events, we postulated that this may also be true for transient ischaemic attack, and that it would be clinically relevant to develop non-invasive in vivo imaging to detect this endothelial activation. Using transcriptional and immunohistological analyses for adhesion molecules in a mouse model, we identified brain endothelial P-selectin as a potential biomarker for transient ischaemic attack. We thus developed ultra-sensitive molecular magnetic resonance imaging using antibody-based microparticles of iron oxide targeting P-selectin. This highly sensitive imaging strategy unmasked activated endothelial cells after experimental transient ischaemic attack and allowed discriminating transient ischaemic attack from epilepsy and migraine, two important transient ischaemic attack mimics. We provide preclinical evidence that combining conventional magnetic resonance imaging with molecular magnetic resonance imaging targeting P-selectin might aid in the diagnosis of transient ischaemic attack
    corecore