994 research outputs found

    TactViz: A VMD Plugin for Tactile Visualization of Protein Structures

    Get PDF
    Scientific disciplines spanning biology, biochemistry, and biophysics involve the study of proteins and their functions. Visualization of protein structures represents a barrier to education and research in these disciplines for students who are blind or visually impaired. Here, we present a software plugin for readily producing variable-height tactile graphics of proteins using the free biomolecular visualization software Visual Molecular Dynamics (VMD) and protein structure data that is publicly available through the Protein Data Bank. Our method also supports interactive tactile visualization of proteins with VMD on electronic refreshable tactile display devices. Employing our method in an academic laboratory has enabled an undergraduate student who is blind to carry out research alongside her sighted peers. By making the study of protein structures accessible to students who are blind or visually impaired, we aim to promote diversity and inclusion in STEM education and research

    PLANETSYS, a Computer Program for the Steady State and Transient Thermal Analysis of a Planetary Power Transmission System: User's Manual

    Get PDF
    The material presented is structured to guide the user in the practical and correct implementation of PLANETSYS which is capable of simulating the thermomechanical performance of a multistage planetary power transmission. In this version of PLANETSYS, the user can select either SKF or NASA models in calculating lubricant film thickness and traction forces

    Green Care: a Conceptual Framework. A Report of the Working Group on the Health Benefits of Green Care

    Get PDF
    ‘Green Care’ is a range of activities that promotes physical and mental health and well-being through contact with nature. It utilises farms, gardens and other outdoor spaces as a therapeutic intervention for vulnerable adults and children. Green care includes care farming, therapeutic horticulture, animal assisted therapy and other nature-based approaches. These are now the subject of investigation by researchers from many different countries across the world

    Polarized micro-Raman studies of femtosecond laser written stress-induced optical waveguides in diamond

    Get PDF
    Understanding the physical mechanisms of the refractive index modulation induced by femtosecond laser writing is crucial for tailoring the properties of the resulting optical waveguides. In this work we apply polarized Raman spectroscopy to study the origin of stress-induced waveguides in diamond, produced by femtosecond laser writing. The change in the refractive index induced by the femtosecond laser in the crystal is derived from the measured stress in the waveguides. The results help to explain the waveguide polarization sensitive guiding mechanism, as well as providing a technique for their optimization.Comment: 5 pages, 4 figure

    Strongly enhanced photon collection from diamond defect centres under micro-fabricated integrated solid immersion lenses

    Get PDF
    The efficiency of collecting photons from optically active defect centres in bulk diamond is greatly reduced by refraction and reflection at the diamond-air interface. We report on the fabrication and measurement of a geometrical solution to the problem; integrated solid immersion lenses (SILs) etched directly into the surface of diamond. An increase of a factor of 10 was observed in the saturated count-rate from a single negatively charged nitrogen-vacancy (NV-) within a 5um diameter SIL compared with NV-s under a planar surface in the same crystal. A factor of 3 reduction in background emission was also observed due to the reduced excitation volume with a SIL present. Such a system is potentially scalable and easily adaptable to other defect centres in bulk diamond.Comment: 5 Pages, 5 figures (4 subfigures) - corrected typ

    Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing

    Get PDF
    Diamond's nitrogen vacancy (NV) center is an optically active defect with long spin coherence times, showing great potential for both efficient nanoscale magnetometry and quantum information processing schemes. Recently, both the formation of buried 3D optical waveguides and high quality single NVs in diamond were demonstrated using the versatile femtosecond laser-writing technique. However, until now, combining these technologies has been an outstanding challenge. In this work, we fabricate laser written photonic waveguides in quantum grade diamond which are aligned to within micron resolution to single laser-written NVs, enabling an integrated platform providing deterministically positioned waveguide-coupled NVs. This fabrication technology opens the way towards on-chip optical routing of single photons between NVs and optically integrated spin-based sensing
    corecore