115 research outputs found

    Machine Learning Techniques for Personalized Detection of Epileptic Events in Clinical Video Recordings

    Full text link
    Continuous patient monitoring is essential to achieve an effective and optimal patient treatment in the intensive care unit. In the specific case of epilepsy it is the only way to achieve a correct diagnosis and a subsequent optimal medication plan if possible. In addition to automatic vital sign monitoring, epilepsy patients need manual monitoring by trained personnel, a task that is very difficult to be performed continuously for each patient. Moreover, epileptic manifestations are highly personalized even within the same type of epilepsy. In this work we assess two machine learning methods, dictionary learning and an autoencoder based on long short-term memory (LSTM) cells, on the task of personalized epileptic event detection in videos, with a set of features that were specifically developed with an emphasis on high motion sensitivity. According to the strengths of each method we have selected different types of epilepsy, one with convulsive behaviour and one with very subtle motion. The results on five clinical patients show a highly promising ability of both methods to detect the epileptic events as anomalies deviating from the stable/normal patient status

    Securing the Wireless Emergency Alerts System

    Get PDF
    Modern cell phones are required to receive and display alerts via the Wireless Emergency Alert (WEA) program, under the mandate of the Warning, Alert, and Response Act of 2006. These alerts include AMBER alerts, severe weather alerts, and (unblockable) Presidential Alerts, intended to inform the public of imminent threats. Recently, a test Presidential Alert was sent to all capable phones in the U.S., prompting concerns about how the underlying WEA protocol could be misused or attacked. In this paper, we investigate the details of this system and develop and demonstrate the first practical spoofing attack on Presidential Alerts, using commercially available hardware and modified open source software. Our attack can be performed using a commercially available software-defined radio, and our modifications to the open source software libraries. We find that with only four malicious portable base stations of a single Watt of transmit power each, almost all of a 50,000-seat stadium can be attacked with a 90% success rate. The real impact of such an attack would, of course, depend on the density of cellphones in range; fake alerts in crowded cities or stadiums could potentially result in cascades of panic. Fixing this problem will require a large collaborative effort between carriers, government stakeholders, and cellphone manufacturers. To seed this effort, we also propose three mitigation solutions to address this threat

    A randomised controlled trial investigating the effect of nutritional supplementation on visual function in normal, and age-related macular disease affected eyes: design and methodology [ISRCTN78467674]

    Get PDF
    BACKGROUND: Age-related macular disease is the leading cause of blind registration in the developed world. One aetiological hypothesis involves oxidation, and the intrinsic vulnerability of the retina to damage via this process. This has prompted interest in the role of antioxidants, particularly the carotenoids lutein and zeaxanthin, in the prevention and treatment of this eye disease. METHODS: The aim of this randomised controlled trial is to determine the effect of a nutritional supplement containing lutein, vitamins A, C and E, zinc, and copper on measures of visual function in people with and without age-related macular disease. Outcome measures are distance and near visual acuity, contrast sensitivity, colour vision, macular visual field, glare recovery, and fundus photography. Randomisation is achieved via a random number generator, and masking achieved by third party coding of the active and placebo containers. Data collection will take place at nine and 18 months, and statistical analysis will employ Student's t test. DISCUSSION: A paucity of treatment modalities for age-related macular disease has prompted research into the development of prevention strategies. A positive effect on normals may be indicative of a role of nutritional supplementation in preventing or delaying onset of the condition. An observed benefit in the age-related macular disease group may indicate a potential role of supplementation in prevention of progression, or even a degree reversal of the visual effects caused by this condition

    Relationship between birth weight and retinal microvasculature in newborn infants

    Get PDF
    Objective: The purposes of this study were to determine the normal retinal microvasculature measurements in human infants who are born at term and to determine whether birth weight influences measurements of retinal microvasculature. Study Design: Retinal arteriole and venule measurements were obtained in a cohort of 24 infants who were born at term. Digital images of both the retinas were obtained using a digital retinal camera after pupillary dilation. Result: In all, 24 newborn infants born at term (12 females and 12 males) were analyzed in this study. The measured retinal arteriole diameters were from 66.8 to 147.8 μm (mean, 94.2±19.6 μm), and the venule diameters were from 102.0 to 167.8 μm (mean, 135.2±19.1 μm). Seven babies in the sample had low birth weight (LBW), while 17 babies were born with normal weight. Babies with lower birth weights had larger arteriole (113.1±17.9 μm vs 86.4±14.4 μm; P=0.0009) and venule diameters (151.7±14.9 μm vs 128.4±16.9 μm; P=0.0040). Conclusion: Retinal venules and arterioles in LBW babies are larger compared with those of normal-birth-weight babies. We postulate that the difference observed in our study was due to in utero pathophysiological changes that occurred in the cerebral circulation of growth-restricted fetuses

    Evaluating Gene Drive Approaches for Public Benefit

    Get PDF
    Gene drive approaches—those which bias inheritance of a genetic element in a population of sexually reproducing organisms—have the potential to provide important public benefits. The spread of selected genetic elements in wild populations of organisms may help address certain challenges, such as transmission of vector-borne human and animal diseases and biodiversity loss due to invasive animals. Adapting various naturally occurring gene drive mechanisms to these aims is a long-standing research area, and recent advances in genetics have made engineering gene drive systems significantly more technically feasible. Gene drive approaches would act through changes in natural environments, thus robust methods to evaluate potential research and use are important. Despite the fact that gene drive approaches build on existing paradigms, such as genetic modification of organisms and conventional biological control, there are material challenges to their evaluation. One challenge is the inherent complexity of ecosystems, which makes precise prediction of changes to the environment difficult. For gene drive approaches that are expected to spread spatially and/or persist temporally, responding to this difficulty with the typical stepwise increases in the scale of studies may not be straightforward after studies begin in the natural environment. A related challenge is that study or use of a gene drive approach may have implications for communities beyond the location of introduction, depending on the spatial spread and persistence of the approach and the population biology of the target organism. This poses a particular governance challenge when spread across national borders is plausible. Finally, community engagement is an important element of responsible research and governance, but effective community engagement for gene drive approaches requires addressing complexity and uncertainty and supporting representative participation in decision making. These challenges are not confronted in a void. Existing frameworks, processes, and institutions provide a basis for effective evaluation of gene drive approaches for public benefit. Although engineered gene drive approaches are relatively new, the necessities of making decisions despite uncertainty and governing actions with potential implications for shared environments are well established. There are methodologies to identify potential harms and assess risks when there is limited experience to draw upon, and these methodologies have been applied in similar contexts. There are also laws, policies, treaties, agreements, and institutions in place across many jurisdictions that support national and international decision making regarding genetically modified organisms and the potential applications of gene drive approaches, such as public health and biodiversity conservation. Community engagement is an established component of many decision-making processes, and related experience and conceptual frameworks can inform engagement by researchers. The existence of frameworks, processes, and institutions provides an important foundation for evaluating gene drive approaches, but it is not sufficient by itself. They must be rigorously applied, which requires resources for risk assessment, research, and community engagement and diligent implementation by governance institutions. The continued evolution of the frameworks, processes, and institutions is important to adapt to the growing understanding of gene drive approaches. With appropriate resources and diligence, it will be possible to responsibly evaluate and make decisions on gene drive approaches for public benefit
    corecore