2,007 research outputs found

    Cutaneous Leishmaniasis and Sand Fly Fluctuations Are Associated with El Nino in Panama

    Get PDF
    BackgroundCutaneous Leishmaniasis (CL) is a neglected tropical vector-borne disease. Sand fly vectors (SF) and Leishmania spp parasites are sensitive to changes in weather conditions, rendering disease transmission susceptible to changes in local and global scale climatic patterns. Nevertheless, it is unclear how SF abundance is impacted by El Nino Southern Oscillation (ENSO) and how these changes might relate to changes in CL transmission.Methodology and FindingsWe studied association patterns between monthly time series, from January 2000 to December 2010, of: CL cases, rainfall and temperature from Panama, and an ENSO index. We employed autoregressive models and cross wavelet coherence, to quantify the seasonal and interannual impact of local climate and ENSO on CL dynamics. We employed Poisson Rate Generalized Linear Mixed Models to study SF abundance patterns across ENSO phases, seasons and eco-epidemiological settings, employing records from 640 night-trap sampling collections spanning 2000?2011. We found that ENSO, rainfall and temperature were associated with CL cycles at interannual scales, while seasonal patterns were mainly associated with rainfall and temperature. Sand fly (SF) vector abundance, on average, decreased during the hot and cold ENSO phases, when compared with the normal ENSO phase, yet variability in vector abundance was largest during the cold ENSO phase. Our results showed a three month lagged association between SF vector abundance and CL cases.ConclusionAssociation patterns of CL with ENSO and local climatic factors in Panama indicate that interannual CL cycles might be driven by ENSO, while the CL seasonality was mainly associated with temperature and rainfall variability. CL cases and SF abundance were associated in a fashion suggesting that sudden extraordinary changes in vector abundance might increase the potential for CL epidemic outbreaks, given that CL epidemics occur during the cold ENSO phase, a time when SF abundance shows its highest fluctuations

    Hidden heterochromatin: Characterization in the Rodentia species Cricetus cricetus, Peromyscus eremicus (Cricetidae) and Praomys tullbergi (Muridae)

    Get PDF
    The use of in situ restriction endonuclease (RE) (which cleaves DNA at specific sequences) digestion has proven to be a useful technique in improving the dissection of constitutive heterochromatin (CH), and in the understanding of the CH evolution in different genomes. In the present work we describe in detail the CH of the three Rodentia species, Cricetus cricetus, Peromyscus eremicus (family Cricetidae) and Praomys tullbergi (family Muridae) using a panel of seven REs followed by C-banding. Comparison of the amount, distribution and molecular nature of C-positive heterochromatin revealed molecular heterogeneity in the heterochromatin of the three species. The large number of subclasses of CH identified in Praomys tullbergi chromosomes indicated that the karyotype of this species is the more derived when compared with the other two genomes analyzed, probably originated by a great number of complex chromosomal rearrangements. The high level of sequence heterogeneity identified in the CH of the three genomes suggests the coexistence of different satellite DNA families, or variants of these families in these genomes

    Predicting clinically unrecognized coronary artery disease: use of two- dimensional echocardiography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>2-D Echo is often performed in patients without history of coronary artery disease (CAD). We sought to determine echo features predictive of CAD.</p> <p>Methods</p> <p>2-D Echo of 328 patients without known CAD performed within one year prior to stress myocardial SPECT and angiography were reviewed. Echo features examined were left ventricular and atrial enlargement, LV hypertrophy, wall motion abnormality (WMA), LV ejection fraction (EF) < 50%, mitral annular calcification (MAC) and aortic sclerosis/stenosis (AS). High risk myocardial perfusion abnormality (MPA) was defined as >15% LV perfusion defect or multivessel distribution. Severe coronary artery stenosis (CAS) was defined as left main, 3 VD or 2VD involving proximal LAD.</p> <p>Results</p> <p>The mean age was 62 ± 13 years, 59% men, 29% diabetic (DM) and 148 (45%) had > 2 risk factors. Pharmacologic stress was performed in 109 patients (33%). MPA was present in 200 pts (60%) of which, 137 were high risk. CAS was present in 166 pts (51%), 75 were severe. Of 87 patients with WMA, 83% had MPA and 78% had CAS. Multivariate analysis identified age >65, male, inability to exercise, DM, WMA, MAC and AS as independent predictors of MPA and CAS. Independent predictors of high risk MPA and severe CAS were age, DM, inability to exercise and WMA.</p> <p>2-D echo findings offered incremental value over clinical information in predicting CAD by angiography. (Chi square: 360 vs. 320 p = 0.02).</p> <p>Conclusion</p> <p>2-D Echo was valuable in predicting presence of physiological and anatomical CAD in addition to clinical information.</p

    Adult Neurogenesis: Ultrastructure of a Neurogenic Niche and Neurovascular Relationships

    Get PDF
    The first-generation precursors producing adult-born neurons in the crayfish (Procambarus clarkii) brain reside in a specialized niche located on the ventral surface of the brain. In the present work, we have explored the organization and ultrastructure of this neurogenic niche, using light-level, confocal and electron microscopic approaches. Our goals were to define characteristics of the niche microenvironment, examine the morphological relationships between the niche and the vasculature and observe specializations at the boundary between the vascular cavity located centrally in the niche. Our results show that the niche is almost fully encapsulated by blood vessels, and that cells in the vasculature come into contact with the niche. This analysis also characterizes the ultrastructure of the cell types in the niche. The Type I niche cells are by far the most numerous, and are the only cell type present superficially in the most ventral cell layers of the niche. More dorsally, Type I cells are intermingled with Types II, III and IV cells, which are observed far less frequently. Type I cells have microvilli on their apical cell surfaces facing the vascular cavity, as well as junctional complexes between adjacent cells, suggesting a role in regulating transport from the blood into the niche cells. These studies demonstrate a close relationship between the neurogenic niche and vascular system in P. clarkii. Furthermore, the specializations of niche cells contacting the vascular cavity are also typical of the interface between the blood/cerebrospinal fluid (CSF)-brain barriers of vertebrates, including cells of the subventricular zone (SVZ) producing new olfactory interneurons in mammals. These data indicate that tissues involved in producing adult-born neurons in the crayfish brain use strategies that may reflect fundamental mechanisms preserved in an evolutionarily broad range of species, as proposed previously. The studies described here extend our understanding of neurovascular relationships in the brain of P. clarkii by characterizing the organization and ultrastructure of the neurogenic niche and associated vascular tissues
    • 

    corecore