569 research outputs found
Nilpotent normal form for divergence-free vector fields and volume-preserving maps
We study the normal forms for incompressible flows and maps in the
neighborhood of an equilibrium or fixed point with a triple eigenvalue. We
prove that when a divergence free vector field in has nilpotent
linearization with maximal Jordan block then, to arbitrary degree, coordinates
can be chosen so that the nonlinear terms occur as a single function of two
variables in the third component. The analogue for volume-preserving
diffeomorphisms gives an optimal normal form in which the truncation of the
normal form at any degree gives an exactly volume-preserving map whose inverse
is also polynomial inverse with the same degree.Comment: laTeX, 20 pages, 1 figur
Interference-induced gain in Autler-Townes doublet of a V-type atom in a cavity
We study the Autler-Townes spectrum of a V-type atom coupled to a
single-mode, frequency-tunable cavity field at finite termperature, with a
pre-selected polarization in the bad cavity limit, and show that, when the mean
number of thermal photons and the excited sublevel splitting is very
large (the same order as the cavity linewidth), the probe gain may occur at
either sideband of the doublet, depending on the cavity frequency, due to the
cavity-induced interference.Comment: Minor changes are mad
Quantum interference in the fluorescence of a molecular system
It has been observed experimentally [H.R. Xia, C.Y. Ye, and S.Y. Zhu, Phys.
Rev. Lett. {\bf 77}, 1032 (1996)] that quantum interference between two
molecular transitions can lead to a suppression or enhancement of spontaneous
emission. This is manifested in the fluorescent intensity as a function of the
detuning of the driving field from the two-photon resonance condition. Here we
present a theory which explains the observed variation of the number of peaks
with the mutual polarization of the molecular transition dipole moments. Using
master equation techniques we calculate analytically as well as numerically the
steady-state fluorescence, and find that the number of peaks depends on the
excitation process. If the molecule is driven to the upper levels by a
two-photon process, the fluorescent intensity consists of two peaks regardless
of the mutual polarization of the transition dipole moments. If the excitation
process is composed of both a two-step one-photon process and a one-step,
two-photon process, then there are two peaks on transitions with parallel
dipole moments and three peaks on transitions with antiparallel dipole moments.
This latter case is in excellent agreement with the experiment.Comment: 11 pages, including 8 figure
Quantum trajectory approach to stochastically-induced quantum interference effects in coherently-driven two-level atoms
Stochastic perturbation of two-level atoms strongly driven by a coherent
light field is analyzed by the quantum trajectory method. A new method is
developed for calculating the resonance fluorescence spectra from numerical
simulations. It is shown that in the case of dominant incoherent perturbation,
the stochastic noise can unexpectedly create phase correlation between the
neighboring atomic dressed states. This phase correlation is responsible for
quantum interference between the related transitions resulting in anomalous
modifications of the resonance fluorescence spectra.Comment: paper accepted for publicatio
Hidden magnetic transitions in thermoelectric layered cobaltite, [CaCoO][CoO]
A positive muon spin rotation and relaxation (SR) experiment on
[CaCoO][CoO], ({\sl i.e.}, CaCoO, a layered
thermoelectric cobaltite) indicates the existence of two magnetic transitions
at 100 K and 400 - 600 K; the former is a transition from a paramagnetic
state to an incommensurate ({\sf IC}) spin density wave ({\sf SDW}) state. The
anisotropic behavior of zero-field SR spectra at 5 K suggests that the
{\sf IC-SDW} propagates in the - plane, with oscillating moments directed
along the c-axis; also the {\sf IC-SDW} is found to exist not in the
[CaCoO] subsystem but in the [CoO] subsystem. In addition, it is
found that the long-range {\sf IC-SDW} order completes below 30 K,
whereas the short-range order appears below 100 K. The latter transition is
interpreted as a gradual change in the spin state of Co ions %% at temperatures
above 400 K. These two magnetic transitions detected by SR are found to
correlate closely with the transport properties of
[CaCoO][CoO].Comment: 7 pages, 8 figures. to be appeared in Phys. Rev.
Cavity implementation of quantum interference in a -type atom
A scheme for engineering quantum interference in a -type atom
coupled to a frequency-tunable, single-mode cavity field with a pre-selected
polarization at finite temperature is proposed. Interference-assisted
population trapping, population inversions and probe gain at one sideband of
the Autler-Townes spectrum are predicted for certain cavity resonant
frequencies.Comment: 2 postscript figures are adde
Quantum interference in a driven two-level atom
We show that a dynamical suppression of spontaneous emission, predicted for a three-level atom [S.-Y. Zhu and M. O. Scully, Phys. Rev. Lett. 76, 388 (1996)] can occur in a two-level atom driven by st polychromatic field. We find that the quantum interference, responsible for the cancellation of spontaneous emission, appears between different channels of transitions among the dressed states of the driven atom. We discuss the effect for bichromatic and trichromatic (amplitude-modulated) fields and fmd that these two cases lead to the cancellation of spontaneous emission in different parts of the fluorescence spectrum. Our system has the advantage of being easily accessible by current experiments. [S1050-2947(99)50712-9]
- …