10 research outputs found
Effects of the magnetic moment interaction between nucleons on observables in the 3N continuum
The influence of the magnetic moment interaction of nucleons on
nucleon-deuteron elastic scattering and breakup cross sections and on elastic
scattering polarization observables has been studied. Among the numerous
elastic scattering observables only the vector analyzing powers were found to
show a significant effect, and of opposite sign for the proton-deuteron and
neutron-deuteron systems. This finding results in an even larger discrepancy
than the one previously established between neutron-deuteron data and
theoretical calculations. For the breakup reaction the largest effect was found
for the final-state-interaction cross sections. The consequences of this
observation on previous determinations of the ^1S_0 scattering lengths from
breakup data are discussed.Comment: 24 pages, 6 ps figures, 1 png figur
Three-Nucleon Forces from Chiral Effective Field Theory
We perform the first complete analysis of nd scattering at
next-to-next-to-leading order in chiral effective field theory including the
corresponding three-nucleon force and extending our previous work, where only
the two-nucleon interaction has been taken into account. The three-nucleon
force appears first at this order in the chiral expansion and depends on two
unknown parameters. These two parameters are determined from the triton binding
energy and the nd doublet scattering length. We find an improved description of
various scattering observables in relation to the next-to-leading order results
especially at moderate energies (E_lab = 65 MeV). It is demonstrated that the
long-standing A_y-problem in nd elastic scattering is still not solved by the
leading 3NF, although some visible improvement is observed. We discuss
possibilities of solving this puzzle. The predicted binding energy for the
alpha-particle agrees with the empirical value.Comment: 36 pp, 20 figure
A new form of three-body Faddeev equations in the continuum
We propose a novel approach to solve the three-nucleon (3N) Faddeev equation
which avoids the complicated singularity pattern going with the moving
logarithmic singularities of the standard approach. In this new approach the
treatment of the 3N Faddeev equation becomes essentially as simple as the
treatment of the two-body Lippmann-Schwinger equation. Very good agreement of
the new and old approaches in the application to nucleon-deuteron elastic
scattering and the breakup reaction is found.Comment: 20 pages, 3 eps figure
Neutron–proton analyzing power at 12 MeV and inconsistencies in parametrizations of nucleon–nucleon data
AbstractWe present the most accurate and complete data set for the analyzing power Ay(θ) in neutron–proton scattering. The experimental data were corrected for the effects of multiple scattering, both in the center detector and in the neutron detectors. The final data at En=12.0 MeV deviate considerably from the predictions of nucleon–nucleon phase-shift analyses and potential models. The impact of the new data on the value of the charged pion–nucleon coupling constant is discussed in a model study
